ECE 210
 Introduction to Digital Logic Design

Lecture 22

Storage Elements:
Latches

Categories of digital networks - Review (Lecture 1)

- Combinational: Output values depend only on present input values.

- Sequential: Output values depend on both present and past inputs.

Definitions

Latches and flip-flops are the simplest types of sequential circuits.

Latches:

\rightarrow Latches are asynchronous,
\rightarrow The output changes when the input changes.

Flip-flops:

\rightarrow A flip-flop is a synchronous version of the latch,
\rightarrow The outputs of all the sequential circuits change simultaneously to the rhythm of a global clock signal.

Timing diagrams

In sequential switching networks, the output depends not only on the present state, but also on the past sequence of inputs.

Timing diagram - assume ideal signals

> pulse
> width

Basic memory latch

Latch is a circuit's ability to remain at a particular logic level after having been driven to that state by an external signal.

(a)

(b)

(c)

(d)
(a) Initial conditions
(b) Feedback: $S=0$ feeds back to keep $Q=$
(c) $S=1$, feeds back $\quad \therefore Q=$
(d) S returns to 0 , then

NOR gate latch - Set/Reset

(a)

(c)

(e)

(b)

(d)

forbidden

NOR gate latch - Set/Reset

The circuit has 2 stable states for the same inputs, and they depend on the past sequence of inputs.

Notice that the output of the first gate is \bar{Q}.

Set-Reset Latch

Function table:

		Next states	
R	S	Q	\bar{Q}
0	0		
0	1		
1	0		
1	1	\times	\times

Properties:
(1) 2 inputs, 2 outputs
(2) $S=1 \rightarrow$
(3) $R=1 \rightarrow$
(4) $S=R=1 \rightarrow$ indeterminate state

S-R Latch Operation Summary

\rightarrow Both inputs 0 : no change
\rightarrow Set input momentarily 1: Q goes to 1
\rightarrow Reset input momentarily 1: Q goes to 0
\rightarrow Reset and reset made 1: Indeterminate state

S	R	Q	Q^{+}	S	R	Q^{+}
0	0	0	0	0	0	Q
0	0	1	1	0	1	0
0	1	0	0	1	0	1
0	1	1	0	1	1	\times
1	0	0	1			
1	0	1	1			
1	1	0	\times			
1	1	1	\times			

SR Latch characteristic equation

K-map for Q^{+}

S	R	Q	Q^{+}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	\times
1	1	1	\times

$$
\begin{aligned}
& Q^{+}=S+\bar{R} Q \\
& Q(t+\epsilon)=S(t)+\overline{R(t)} Q(t)
\end{aligned}
$$

S and R not allowed to be 1 at the same time.

SR latch example

Timing diagram for S-R latch

SR Latch with control input

E_{n}	S	R	Q^{+}
0	\times	\times	
1	0	0	
1	0	1	
1	1	0	
1	1	1	forbidden

D latch - Transparent latch

Ensures that S and R are never equal 1 at the same time.
The D latch can hold Data in its internal storage.

E_{n}	D	Next state
0	\times	$Q^{+}=Q$ (no change)
1	0	$Q^{+}=0=D$
1	1	$Q^{+}=1=D$

D latch - Transparent latch

From the truth table the characteristic equation for the D-latch is :

$$
Q^{+}=\overline{E_{n}} Q+E_{n} D
$$

E_{n}	D	Q	Q^{+}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$E_{n} D \xrightarrow{Q}$		
00	0	1
01	0	1
11	1	1
10	0	0

Timing diagram for D latch

Timing diagram for D latch

Next class...

- Flip-flops
- Please read Lecture 23

ECE 210
 Introduction to Digital Logic Design

Lecture 23

Storage Elements:
Flip-Flops

Flip-flops vs Latches

\rightarrow A latch responds to a change in the level of a signal (a),
\rightarrow A flip-flop is a synchronous version of the latch,
\rightarrow A flip-flop triggers only during a signal transition (b-c).
\rightarrow The outputs change to the rhythm of a global clock signal.

Set-Reset Latch (review)

Function table:
Properties:

R	S	Q^{+}	$\overline{Q^{+}}$
0	0	Q	$\overline{Q^{+}}$
0	1	1	0
1	0	0	1
1	1	\times	\times

(1) $S=1 \rightarrow$
(2) $R=1 \rightarrow$
(3) $S=R=1 \rightarrow$ indeterminate state
$Q^{+}=S+\bar{R} Q$
$R=S=1 \rightarrow$ forbidden input

D latch - Transparent latch (review)

Ensures that S and R are never equal 1 at the same time.
The D latch can hold Data in its internal storage.

E_{n}	D	Next state
0	\times	$Q^{+}=Q$ (no change)
1	0	$Q^{+}=0=D$
1	1	$Q^{+}=1=D$

Characteristic equation:

$$
Q^{+}=\overline{E_{n}} Q+E_{n} D
$$

Edge-Triggered D Flip-flop

Unlike the D-latch, the D-flip flop output changes in response to a 0 to 1 transition on the clock signal.

We say that the flip-flop is triggered on the rising edge (or positive edge) of the clock signal.

D flip-flops can be constructed from two D-latches

Edge-Triggered D Flip-flop

Edge-Triggered D Flip-flop

The state of a D flip-flop after the active clock edge is equal to the input D before the active edge.

The output changes are delayed until after the active edge of the clock pulse.
The characteristic equation is $Q^{+}=D$.
Falling edge trigger:

Q

SR Flip-flop

An SR flip-flop is similar to an SR latch:
$\rightarrow S=1$ sets the output to 1
$\rightarrow R=1$ resets the output to 0

But: The flip-flop has a clock-input: The output changes only after an active clock edge.

$S=R=1 \rightarrow$ not allowed.

SR Flip-flop

Q_{2}

SR Flip-flop

Operation summary:
$\rightarrow S=R=0$ no state change
$\rightarrow S=1, R=0$ sets Q to 1 after active $C k$ edge
$\rightarrow S=0, R=1$ resets the output to 0 after active $C k$ edge
$\rightarrow S=R=1$ not allowed

How do we ensure that S and R are never 1 at the same time ?

JK Flip-flop

Same circuit as for the SR flip-flop, except that
$\rightarrow S$ and R have been replaced with J and K
$\rightarrow Q$ and \bar{Q} are feeding back into the input
\rightarrow Only one of S and R inputs can be 1 at the same time

\rightarrow If $J=K=1, Q^{+}=$

JK Flip-flop

The JK flip-flop is an extended version of SR flip-flop:
$\rightarrow J$ corresponds to S
$\rightarrow K$ corresponds to R

J	K	Q	Q^{+}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
$\mathbf{1}$	$\mathbf{1}$	0	1
$\mathbf{1}$	$\mathbf{1}$	1	0

$$
Q^{+}=J \bar{Q}+\bar{K} Q
$$

JK Flip-flop

Q_{1}
Q_{2}

T Flip-flop

The T flip-flop or toggle flip-flop is often used in building counters.
When $T=1$ the flip-flop changes state after the active edge of the clock.
When $T=0$ no change occurs.

J	K	Q	Q^{+}	
$\mathbf{0}$	$\mathbf{0}$	0	0	Q
$\mathbf{0}$	$\mathbf{0}$	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
$\mathbf{1}$	$\mathbf{1}$	0	1	\bar{Q}
$\mathbf{1}$	$\mathbf{1}$	1	0	

$$
Q^{+}=T \bar{Q}+\bar{T} Q=T \oplus Q
$$

T flip-flop

Timing diagram for T flip-flop.
Rising edge trigger

Falling edge trigger

Q

T flip-flop

T flip-flops connected in a cascade mode.

T

Q_{2}
Q_{3}

Summary

Device

SR latch and flip-flop

D-latch

D flip-flop

JK flip-flop

T flip-flop

$$
Q^{+}=D
$$

$Q^{+}=D$
$J \bar{Q}+\bar{K} Q$
Characteristic equation

$$
Q^{+}=S+\bar{R} Q
$$

$$
Q^{+}=E_{n} D+\overline{E_{n}} Q
$$

Next class...

- Binary counters
- Please read Lecture 24

ECE 210

Introduction to Digital Logic Design

Lecture 24
Design of Binary Counters

Binary counter

Counts pulses and displays count in binary form
\rightarrow Implemented with flip-flops (FF),
\rightarrow Pulses (input P) go to clock input of the $F F$,
\rightarrow The counters discusses here are synchronous (all FF change state simultaneously),
\rightarrow Ripple counter: A FF triggers the next FF (not discussed).

$$
000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow \ldots \rightarrow 111 \rightarrow 000
$$

Binary counter

Next state table

Current state					Next state		
A	B	C		A^{+}	B^{+}	C^{+}	
0	0	0		0	0	1	
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Synchronous counter

Using T flop-flops
\rightarrow Three T flip-flops are used,
\rightarrow Objective: Determine the inputs to each $F F$ (i.e., T_{A}, T_{B}, and T_{C}),

T-FF transition tables

Q	T	Q^{+}	Q	Q^{+}	T
0	0		0	0	
0	1		0	1	
1	0		1	0	
1	1		1	1	

Binary counter

Next state table using T flip-flops

Current state			Next state			FF inputs		
A	B	C	A^{+}	B^{+}	C^{+}	$T_{\text {A }}$	T_{B}	T_{C}
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

$\rightarrow T=0$ no change
$\rightarrow T=1$ toggles output

Binary counter

K-maps for T_{A} and T_{B}

Current state				FF inputs	
A	B	C		T_{A}	T_{B}
0	0	0		0	0
0	0	1		0	1
0	1	0		0	0
0	1	1		1	1
1	0	0		0	0
1	0	1		0	1
1	1	0		0	0
1	1	1		1	1

${ }^{-1}$	0	1
00	0	0
01	1	1
11	1	1
10	0	0

Binary counter

Logic diagram

State diagram

Binary counter - Incomplete sequence

Assume that the state $A B C=111$ is missing.

Current state			Next state			FF inputs		
A	B	C	A^{+}	B^{+}	C^{+}	$T_{\text {A }}$	T_{B}	T_{C}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0						
1	1	1						

Binary counter - Incomplete sequence
Solve for T_{B} and T_{C}.

Counters for arbitrary sequences

The sequence of states of a counter is not always in straight binary order. Design a counter for the sequence given in the state graph using T flip-flops

Current state					Next state			
A	B	C		A^{+}	B^{+}	C^{+}		
	0	0		1	0	0		
0	0	1						
0	1	0		0	1	1		
0	1	1		0	0	0		
1	0	0		1	1	1		
1	0	1						
1	1	0						
1	1	1		0	1	0		

Counters for arbitrary sequences

\rightarrow Start from the next state K-maps. Derive the T inputs from them.

$B C\rangle^{A}$	0	1
00	1	1
01	\times	\times
11	0	0
10	0	\times

$B C{ }^{A}$	0	1
00	0	1
01	\times	\times
11	0	1
10	1	\times

C^{A}	0	1
00	0	1
01	\times	\times
11	0	0
10	1	\times

$B C{ }^{A}$	0	1	$T_{A}=$
00	0	1	
01	\times	\times	$T_{B}=$
11	1	1	
10	1	\times	

Counters for arbitrary sequences

Counters design using T flip-flops

\rightarrow Form a state table which gives the next FF states;
\rightarrow Plot the next-state maps from the table;
\rightarrow Plot a T input map for each $F F . T$ is 1 whenever $Q^{+} \neq Q$ and 0 otherwise;
\rightarrow Find the T input equations from the maps and realize the circuit.

Note that although the original state table may not be completely specified, the actual design must specify all states using don't care conditions.

When the FF's are turned on, their initial states may be unpredictable.
All of the don't care states should be checked to make sure that they eventually lead into the main counting sequence.

Counter design using D flip-flops

\rightarrow For a D flip-flop, $Q^{+}=D$.
\rightarrow The D input map is identical to the next-state map.
\rightarrow The equation for D can be read from the Q^{+}map.

Q	$Q+$	D
0	0	
0	1	
1	0	
1	1	

Counter design using D flip-flops

$B C{ }^{A}$	0	1
00	1	1
01	\times	\times
11	0	0
10	0	\times

$B C{ }^{A}$	0	1
00	0	1
01	\times	\times
11	0	1
10	1	\times

$B C{ }^{A}$	0	1
00	0	1
01	\times	\times
11	0	0
10	1	\times

Counter design using D flip-flops

Next class...

- Registers
- Please read Lecture 25

ECE 210
Introduction to Digital Logic Design

Lecture 25
Registers

Registers

\rightarrow A resister is a group of Flip-Flops that are used as a single unit to store a group of bits
\rightarrow Several D Flip-Flops may be grouped together with a common clock to form a single register
\rightarrow Each FF can store one bit of information in the output Q_{i}

Characteristic equations of D-flip flops: $Q^{+}=$

Registers

4-bit register with parallel load and mode control

Changes are triggered by the clock input on falling edge.

Load	Next state				
	Q_{3}^{+}	Q_{2}^{+}	Q_{1}^{+}	Q_{0}^{+}	
0	Q_{3}	Q_{2}	Q_{1}	Q_{0}	No change
1	D_{3}	D_{2}	D_{1}	D_{0}	Parallel load

Registers with CE input

Gating the clock with Load can cause timing problems.
\rightarrow Load $=0:$ the clock is disable and the data is locked in the FF

\rightarrow Load $=1$: data will be loaded into FF following the falling edge
FF may have a common clear signal: $C l r N=0$ resets all $F F$ outputs to 0 .

Shift registers

Right-shift register
\rightarrow The stored data is shifted to the right on falling clock edge
\rightarrow The input line is transferred to the output of the $1^{\text {st }} \mathrm{FF}$;
\rightarrow The output of $1^{\text {st }} \mathrm{FF}$ is transferred to the $2^{\text {st }} \mathrm{FF}$;
\rightarrow The process carries on until the last FF.

Shift register - timing diagram

Initial state is 0101.

Shift registers

Serial vs parallel registers
\rightarrow Serial registers take the data into the first $F F$ one bit at a time.
\rightarrow Serial registers provide output only in serial mode of the last FF. The output of the other FF are internal to the circuit.
\rightarrow Parallel registers can load all bits at the same time;
\rightarrow Parallel registers allow reading all bits at the same time;

Parallel shift registers are used to convert parallel data to serial data.

Parallel and serial register

Parallel-load serial out shift register

\rightarrow Mode $=1$ The resister serially inputs the data
\rightarrow Mode $=0$ The resister inputs the data in parallel form

Universal shift register

Shift register can be used to convert serial to parallel data and vice versa.
\rightarrow Data enters and exits serially by shifting the register
\rightarrow Data entered in parallel can be taken out in serial

In a general shift register
\rightarrow A clear line forces the register to 0
\rightarrow A clock enable CE line leaves the information in the register unchanged
\rightarrow A parallel load control enables conversion from parallel to serial

Applications:
\rightarrow Transmission of data over a single line channel
\rightarrow Adding binary numbers.

Parallel adder with accumulator

Stores on number in a register of $\mathrm{FF}\left(X=Q_{3} Q_{2} Q_{1} Q_{0}\right)$
Adds a second number to it ($Y=y_{4} y_{3} y_{2} y_{1}$),
Leaves the result stored in the accumulator.

Counters using S-R Flip-Flops

Next state table for a $S-R$ flip-flop.

Q	Q^{+}	S	R	Current state			Next state			FF inputs	
				A	B	C	A^{+}	B^{+}	C^{+}	S_{C}	R_{C}
0	0	0	\times								
0	1	1	0	0	0	0	1	0	0	1	0
1	0	0	1	0	0	1	\times	\times	\times	\times	\times
1	1	\times	0	0	1	0	0	1	1		
				0	1	1	0	0	0		
				1	0	0	1	1	1		
				1	0	1	\times	\times	\times	\times	\times
				1	1	0	\times	\times	\times	\times	\times
				1	1	1	0	1	0	0	1

Counters using S-R Flip-Flops

Counters using S-R Flip-Flops

Next class...

- Analysis of Clocked Sequential Circuits
- Please read Lecture 26

ECE 210
Introduction to Digital Logic Design

Lecture 26
 Analysis of Clocked Sequential Circuits

Sequential circuits

In sequential circuits the sequences of outputs generally depends on the input sequence.

To analyse the circuit we can
\rightarrow Trace 0 and 1 signals through the circuit (timing diagram)
\rightarrow Create a state state to represent the behaviour of the circuit

Design requires studying timing relationship between inputs, clock, and output

Serial transmission

Transmission on a communications channel between two machines can occur in several different ways.

The transmission is characterised by:
\rightarrow The direction of the exchanges
\rightarrow The transmission mode: the number of bits sent simultaneously
\rightarrow Synchronization between the transmitter and receiver

Serial transmission

Synchronous transmission

\rightarrow The transmitter and receiver are placed by the same clock.
\rightarrow The receiver continuously receives the information at the same rate the transmitter sends it.
\rightarrow Supplementary information is inserted to guarantee that there are no errors during transmission.

Sequential parity checker

Consider a 7-bit code for information exchange
In serial transmission, an $8^{\text {th }}$ bit is added for error detection
\rightarrow If the $8^{\text {th }}$ bit makes total number of 1 's odd : odd parity
\rightarrow If the $8^{\text {th }}$ bit makes total number of 1 's even: even parity

8-bit word	
0000000	1
0000001	0
1100000	1
0100101	0

The parity bit can be chosen such that the parity is always even:
\rightarrow If any single bit changes during transmission, the parity is no longer checked.
\rightarrow Transmission errors can be detected.

Parity checker for serial data

The output should be
$\rightarrow Z=1$ if the total number of 1 is odd
$\rightarrow Z=0$ if the total number of 1 is even

Transmission error occurs if
\rightarrow Data had odd parity and the final output is $Z=0$
\rightarrow Data had even parity and the final output is $Z=1$

Z

Parity checker for serial data

State graph
\rightarrow Circuit must remember whether the number of 1 inputs is odd or even
\rightarrow Two states are required: S_{0} and S_{1}
\rightarrow State S_{0} means that the number of 1 's is even: $Z=$
\rightarrow State S_{1} means that the number of 1 's is odd: $Z=$

Parity checker for serial data

Implement the circuit using a JK flip-flop

X	Z	Z^{+}
0	0	0
0	1	1
1	0	1
1	1	0

Q	Q^{+}	J	K
0	0	0	\times
0	1	1	\times
1	0	\times	1
1	1	\times	0

Parity checker for serial data

State equations

A state equation specifies the next state as a function of the present state and inputs.

$$
\begin{aligned}
& A^{+}= \\
& B^{+}= \\
& y=
\end{aligned}
$$

State table

$A B$	$A^{+} B^{+}$			$A B$	$A^{+} B^{+}$	
	$X=0$	$X=1$			$X=0 \quad X=1$	
00	00	01		S_{0}		
01	00	11		S_{1}		
10	00	10		S_{2}		
11	00	10		S_{3}		

$$
A^{+}=X(A+B)
$$

$$
B^{+}=\bar{A} X
$$

State gragh (without output)

State equations

State equation for a $J K-F: Q^{+}=\sqrt{Q}+\bar{K} Q$.

$$
\begin{aligned}
& J_{A}= \\
& K_{A}= \\
& J_{B}= \\
& K_{B}= \\
& A^{+}= \\
& B^{+}= \\
& z=A
\end{aligned}
$$

State table

$A B$	$A^{+} B^{+}$			$A B$		$A^{+} B^{+}$	
	$X=0$	$X=1$		$X=0$	$X=1$		
00	01	01		S_{0}			
01	01	01		S_{1}			
10	11	01		S_{2}			
11	11	00		S_{3}			

$$
A^{+}=\bar{X} A
$$

$$
B^{+}=\bar{A}+\bar{B}+\bar{X}
$$

State gragh (without output)

State equations

State equation for a TFF: $Q^{+}=T \oplus Q$.

State table

$A B$	$A^{+} B^{+}$	
	$X=0$	$X=1$
00	00	10
01	11	01
10	11	00
11	00	11

$A B$	$A^{+} B^{+}$	
	$X=0 \quad X=1$	
S_{0}		
S_{1}		
S_{2}		
S_{3}		

$$
A^{+}=A \oplus B \oplus X
$$

$$
B^{+}=B \oplus(A \bar{X})
$$

State gragh (without output)

Next class...

- Moore State Machines
- Please read Lecture 27

ECE 210
Introduction to Digital Logic Design

Lecture 27
Analysis of Moore State Machines

Categories of sequential circuits

Moore machine

\rightarrow Output is a function of

- The present state of FF's only

Mealy machine
\rightarrow Output is a function of

- The present state of FF's
- And the input to the circuit

Analysis of sequential networks

Two methods for analysis of sequential circuits:

Using signal tracing and timing diagram
\rightarrow This will work for small circuits
\rightarrow Also used to design sequential circuits

Using state tables and graphs
\rightarrow More convenient for large circuits

Analysis of sequential networks

Moore machine

Example 1: The output is a function of the present state of the FF only

Analysis of sequential networks

Moore machine: Changes only occur after active clock edge

Analysis of sequential networks

Using state tables and graphs
(1) Determine the FF input and output equations
(2) Derive the next state equations for each FF
© Plot the next state K -map for each FF
(4) Create a state table from step 2 or 3

Analysis of sequential networks

Using state tables and graphs
Example using Moore machine

Step 1 - FF input and output equations
$J_{A}=$
$K_{A}=$
$J_{B}=$
$K_{B}=$
$Z=B$

Analysis of sequential networks

Using state tables and graphs
Example using Moore machine

Step 2 - FF next state equations

$$
\begin{aligned}
& A^{+}=J_{A} \bar{A}+\bar{K}_{A} A \\
& A^{+}= \\
& B^{+}=
\end{aligned}
$$

Analysis of sequential networks
Using state tables and graphs Example using Moore machine

Step 3 - Next state K-map for each FF

Analysis of sequential networks

Using state tables and graphs
Example using Moore machine

Step 4 - Transition table

	$A^{+} B^{+}$	
present		
$A B$	$C=0 \quad C=1$	output Z
00		
01		
11		
10		

Analysis of sequential networks
Timing chart from the transition table

	$A^{+} B^{+}$		present
$A B$	$C=0$	$C=1$	output Z
00	00	11	0
01	00	11	1
10	10	01	0
11	11	10	1

Analysis of sequential networks
Moore state graph.

$A B$	$A^{+} B^{+}$		Z	present state	next state		
	$C=0$	$C=1$			$C=0$	$C=1$	Z
00	00	11	0	S_{0}			
01	00	11	1				
11	11	10	1				
10	10	01	0				

Analysis of sequential networks

Using state tables and graphs
Example using Moore machine

FF input and output equations

$$
\begin{aligned}
& D_{A}= \\
& D_{B}= \\
& Z= \\
& A^{+}= \\
& B^{+}=
\end{aligned}
$$

Analysis of sequential networks

Next state K-map for each FF

Analysis of sequential networks

Transition table

	$A^{+} B^{+}$		present
$A B$	$X=0$	$X=1$	output Z
00			
01			
11			
10			

State table

present	next state		
state	$X=0$	$X=1$	Z
S_{0}			
S_{1}			
S_{2}			
S_{3}			

Analysis of sequential networks

present	next state		
state	$X=0$	$X=1$	Z
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

present	next state		
state	$X=0$	$X=1$	
S_{0}	S_{3}	S_{1}	0
S_{1}	S_{0}	S_{2}	1
S_{2}	S_{1}	S_{2}	0
S_{3}	S_{2}	S_{1}	1

Next class...

- Mealy state machines
- Please read Lecture 28

ECE 210
Introduction to Digital Logic Design

Lecture 28
Analysis of Mealy State Machines

Categories of sequential circuits

Moore machine
\rightarrow Output is a function of

- The present state of FF's only

Mealy machine

\rightarrow Output is a function of

- The present state of FF's
- And the input to the circuit

Analysis of sequential networks

Two methods for analysis of sequential circuits:

Using signal tracing and timing diagram
\rightarrow This will work for small circuits
\rightarrow Also used to design sequential circuits

Using state tables and graphs
\rightarrow More convenient for large circuits

Analysis of sequential networks

Mearly machine

The output is a function of the present state, and of the input

Analysis of sequential networks

Mearly machine: Changes occur after active clock edge and changes in the input

Analysis of sequential networks

Analysis through state tables and graphs
(1) Determine the FF input and output equations
(2) Derive the next state equations for each $F F$
(3) Plot the next state K-map for each FF
(4) Create the state table and graph

Analysis of sequential networks

Using state tables and graphs
Example using Moore machine

Step 1 - FF input and output equations

$J_{A}=$	$K_{A}=$
$J_{B}=$	$K_{B}=$
$Z=$	

Analysis of sequential networks

Using state tables and graphs
Example using Moore machine

Step 2 - FF next state equations

$$
\begin{aligned}
& A^{+}=J_{A} \bar{A}+\bar{K}_{A} A \\
& A^{+}= \\
& B^{+}=
\end{aligned}
$$

Analysis of sequential networks

Using state tables and graphs
Example using Mealy machine

Step 3 - Next state K-map for each FF

$$
\begin{aligned}
& A^{+}=X B \bar{A}+\bar{X} A \\
& B^{+}=X \bar{B}+\bar{X} B+\bar{A} B \\
& Z=\bar{A} B \bar{X}+X \bar{B}+X A
\end{aligned}
$$

Analysis of sequential networks

Using state tables and graphs

Step 4 - Transition table

	$A^{+} B^{+}$		output Z	
$A B$	$X=0$	1	$X=0$	
00				
01				
11				
10				

$A B{ }^{X}$	0	1
00	0	1
01	1	0
11	0	1
10	0	1

Analysis of sequential networks

	$A^{+} B^{+}$		output Z	
$A B$	$X=0$	1	$X=0$	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

	$A^{+} B^{+}$		output Z	
$A B$	$X=0$	1	$X=0$	1
S_{0}			0	1
S_{1}			1	0
S_{2}			0	1
S_{3}			0	1

Analysis of sequential networks

FF input and output equations

$$
\begin{array}{ll}
J= & K= \\
D= &
\end{array}
$$

$Z=$
$A^{+}=$
$B^{+}=$

Analysis of sequential networks

$$
\begin{aligned}
& A^{+}=B(A+X) \\
& B^{+}=(\bar{A} \oplus X) \bar{B}+X B=\bar{A} \bar{B} \bar{X}+A \bar{B} X+X B \\
& Z=B(A+X)
\end{aligned}
$$

Analysis of sequential networks

	$A^{+} B^{+}$		output Z	
$A B$	$X=0$	1	$X=0$	
00		1		
01				
11				
10				

	$A^{+} B^{+}$		output Z	
$A B$	$X=0$	1	$X=0$	1
S_{0}				
S_{1}				
S_{2}				
S_{3}				

Analysis of sequential networks

	$A^{+} B^{+}$		output Z	
$A B=0$	1	$X=0$	1	
S_{0}	S_{1}	S_{1}	0	0
S_{1}	S_{0}	S_{2}	1	0
S_{2}	S_{3}	S_{2}	1	1
S_{3}	S_{0}	S_{1}	0	1

Next class...

- Sequence detector
- Please read Lecture 29

ECE 210

Introduction to Digital Logic Design

Lecture 29
 Design of a Sequence Detector

Sequence detector

Single input X, single output Z sequential circuit
Design a network so that any input sequence ending in 101 will produce an output $Z=1$ coincident with the last 1 .

The network should not reset

$$
\begin{array}{lllllllllllllllll}
X= & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
Z= & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
$$

State graph

\rightarrow The circuit assumes Mealy network representation
\rightarrow Show the sequence of states and outputs in response to inputs

$$
\begin{aligned}
& X=0011011001010100 \\
& Z=0000010000010100
\end{aligned}
$$

Next state tables

Now we are ready to design a circuit which has the behaviour described above The system has 3 states: How many FF are needed?

Next state tables

Next-state maps for each FF and the output function Z. If $D-F F$ is used, $Q^{+}=D$.

	$A^{+} B^{+}$		output Z	
$A B$	$X=0$	1	$X=0$	1
00	00	01	0	0
01	10	01	0	0
10	00	01	0	1

$$
\begin{aligned}
& A^{+}= \\
& B^{+}= \\
& Z=
\end{aligned}
$$

Sequence detector circuit

Sequence detector with Moore machine

Let us now rework the previous example as a Moore machine.
The circuit should output 1 only if the input 101 has occurred.

Moore vs Mealy state representation

State graph - Moore representation

For a Moore machine, the output is written with the state instead of with the transition between states.

State tables

	Next state		output
$A B$	$X=0$	1	Z
S_{0}			0
S_{1}			0
S_{2}			0
S_{3}			1

	$A^{+} B^{+}$		output
$A B$	$X=0$	1	Z
00			0
01			0
11			0
10			1

State maps

	$A^{+} B^{+}$		output
$A B=0$	1	Z	
00	00	01	0
01	11	01	0
11	00	10	0
10	11	01	1

If $D-F F$ is used, $Q^{+}=D$.

$$
\begin{aligned}
& A^{+}= \\
& B^{+}= \\
& Z=
\end{aligned}
$$

Sequence detector circuit - Moore machine

Rework the example using JK - FF
If $J K-F F$ is used, $Q^{+}=J \bar{Q}+\bar{K} Q$.

	$A^{+} B^{+}$		output
$A=0$	1	Z	
00	00	01	0
01	11	01	0
11	00	10	0
10	11	01	1

$J K-F F$ transition table

Q	Q^{+}	J	K
0	0	0	\times
0	1	1	\times
1	0	\times	1
1	1	\times	0

	$A^{+} B^{+}$				
	$X=0$			$X=1$	
$A B$	$J_{A} K_{A}$	$J_{B} K_{B}$	J_{A}	K_{A}	$J_{B} K_{B}$
00					
01					
11					
10					

Transition maps - JK - FF

	$A^{+} B^{+}$				
	$X=0$		$X=1$		
$A B$	$J_{A} K_{A}$	$J_{B} K_{B}$	$J_{A} K_{A}$	$J_{B} K_{B}$	
00	$0 \times$	$0 \times$	$0 \times$	$1 \times$	
01	$1 \times$	$\times 0$	$0 \times$	$\times 0$	
11	$\times 1$	$\times 1$	$\times 0$	$\times 1$	
10	$\times 0$	$1 \times$	$\times 1$	$1 \times$	

$A B{ }^{X}$	0	1
00		
01	1	
11	\times	\times
10	\times	\times

Sequence detector circuit - Moore machine

$$
\begin{array}{ll}
J_{A}=\bar{X} B & K_{A}=X \oplus B \\
J_{B}=X+A & K_{B}=A \\
Z=A \bar{B} &
\end{array}
$$

Next class...

- Multiple input/output networks
- Please read Lecture 30

ECE 210
Introduction to Digital Logic Design

Lecture 30
Multiple Inputs and Outputs

Multiple Inputs and Outputs

Sequential circuits may have multiple inputs and outputs
Consider as an example the following circuit

whose state graph is

Multiple Inputs and Outputs

Moore machine \rightarrow State table has single output column
Mealy machine \rightarrow State table has multiple output columns

	next state					present output				
State	$X_{0} X_{1}=00$	01	10	11	$X_{0} X_{1}=00$	01	10	11		
S_{0}	S_{3}	S_{2}	S_{1}	S_{0}	00	10	11	01		
S_{1}	S_{0}	S_{1}	S_{2}	S_{3}	10	10	11	11		
S_{2}	S_{3}	S_{0}	S_{1}	S_{1}	00	10	11	01		
S_{3}	S_{2}	S_{2}	S_{1}	S_{0}	00	00	01	01		

Multiple Inputs and Outputs

	next state					present output				
State	$X_{0} X_{1}=00$	01	10	11	$X_{0} X_{1}=00$	01	10	11		
S_{0}	S_{3}	S_{2}	S_{1}	S_{0}	00	10	11	01		
S_{1}	S_{0}	S_{1}	S_{2}	S_{3}	10	10	11	11		
S_{2}	S_{3}	S_{0}	S_{1}	S_{1}	00	10	11	01		
S_{3}	S_{2}	S_{2}	S_{1}	S_{0}	00	00	01	01		

The state table can be simplified by using decimal inputs and outputs

	next state							
State	$X_{0} X_{1}=00$	01	10	11	$X_{0} X_{1}=00$	01	10	11
S_{0}	S_{3}	S_{2}	S_{1}	S_{0}	0	2	3	1
S_{1}	S_{0}	S_{1}	S_{2}	S_{3}	2	2	3	3
S_{2}	S_{3}	S_{0}	S_{1}	S_{1}	0	2	3	1
S_{3}	S_{2}	S_{2}	S_{1}	S_{0}	0	0	1	1

Multiple Inputs and Outputs

	next state					present output			
State	$X_{0} X_{1}=00$	01	10	11	$X_{0} X_{1}=00$	01	10	11	
S_{0}		S_{2}	S_{1}	S_{0}	0	2	3	1	
S_{1}	S_{0}	S_{1}	S_{2}	S_{3}	2	2	3	3	
S_{2}	S_{3}	S_{0}	S_{1}	S_{1}	0	2	3	1	
S_{3}	S_{2}	S_{2}	S_{1}	S_{0}	0	0	1	1	

Example: Traffic light control

Design a circuit to control a pedestrian crosswalk traffic light.
Default state: green signal for cars
If "walk button" is pressed:
\rightarrow Signal turns yellow,
\rightarrow Hold yellow signal for 5 seconds
\rightarrow Signal turns red
\rightarrow Hold red for 15 seconds
\rightarrow Return to green
Reset 15 s timer whenever walk button is pressed

Example - Continued

Circuit inputs

\rightarrow walk button signal X.
Outputs: 3 traffic light outputs:
\rightarrow green (G),
\rightarrow yellow (Y),
$\rightarrow \operatorname{red}(R)$.
Assume that a clock signal with a period of 5 seconds is available.

How many states are needed?

State graph
Input: Signal X.
Output: GYR
Clock signal period: 5 seconds.
Reset 15 s timer whenever $X=1$.

State table

State	Next state		output$G Y R$
	$X=0$	$X=1$	
S_{0}	S_{0}	S_{1}	100
S_{1}	S_{2}	S_{2}	010
S_{2}	S_{3}	S_{2}	001
S_{3}	S_{4}	S_{2}	001
S_{4}	S_{5}	S_{2}	001
S_{5}	S_{0}	S_{2}	001

State table

State	Next state		output$G Y R$
	$X=0$	$X=1$	
S_{0}	S_{0}	S_{1}	100
S_{1}	S_{2}	S_{2}	010
S_{2}	S_{3}	S_{2}	001
S_{3}	S_{4}	S_{2}	001
S_{4}	S_{5}	S_{2}	001
S_{5}	S_{0}	S_{2}	001

ABC	$A^{+} B^{+} C^{+}$		output$G Y R$
	$X=0$	$X=1$	
000	000	001	100
001	010	010	010
010	011	010	001
011	100	010	001
100	101	010	001
101	000	010	001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
111	$\times \times \times$	$\times \times \times$	$\times \times \times$

State maps

If T FF's are used, $Q^{+}=T \oplus Q$.

$A B C$	$A^{+} B^{+} C^{+}$		output$G Y R$
	$X=0$	$X=1$	
000	000	001	100
001	010	010	010
010	011	010	001
011	100	010	001
100	101	010	001
101	000	010	001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
111	$\times \times \times$	$\times \times \times$	$\times \times \times$

Q	Q^{+}	T
0	0	0
0	1	1
1	0	1
1	1	0

ABC	$A^{+} B^{+} C^{+}$		output$G \dot{Y} R$
	$X=0$	$X=1$	
	$T_{A} T_{B} T_{C}$	$T_{A} T_{B} T_{C}$	
000	000	001	100
001	011	011	010
010	$0 \quad 01$	000	001
011	$1 \begin{array}{lll}1 & 1\end{array}$	$0 \quad 01$	001
100			001
101			001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
111	$\times \times \times$	$\times \times \times$	$\times \times \times$

State K-maps

ABC	$A^{+} B^{+} C^{+}$		output $G Y R$
	$X=0$	$X=1$	
	$T_{A} T_{B} T_{C}$	$T_{A} T_{B} T_{C}$	
000	000	001	100
001	011	011	010
010	001	000	001
011	111	001	001
100	001	110	001
101	101	111	001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
111	$\times \times \times$	$\times \times \times$	$\times \times \times$

$$
\begin{aligned}
& T_{A}=A X+A C+B C \bar{X} \\
& T_{B}=A X+\bar{A} C \bar{X}+\bar{B} C X \\
& T_{C}=C+A \bar{X}+B \bar{X}+\bar{A} \bar{B} X
\end{aligned}
$$

$C X{ }^{A}$		01	11	10
00		1	\times	1
01	1		\times	
11	1	1	\times	1
10	1	1	\times	1

Output K-maps

$A B C$	$A^{+} B^{+} C^{+}$		output$G Y R$
	$X=0$	$X=1$	
	$T_{A} T_{B} T_{C}$	$T_{A} T_{B} T_{C}$	
000	000	001	100
001	011	011	010
010	001	000	001
011	111	001	001
100	001	110	001
101	101	111	001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
111	$\times \times \times$	$\times \times \times$	$\times \times \times$

$$
\begin{aligned}
& G=\bar{A} \bar{B} \bar{C} \\
& Y=\bar{A} \bar{B} C \\
& R=A+B
\end{aligned}
$$

Traffic light circuit

Check the don't care states.

State table

When the FF's are turned on, their initial states may be unpredictable.
Don't care states: S_{6} and S_{7}.

Example 3 - Complex sequence detector

A sequential circuit has one input (X) and two outputs $\left(Z_{1}\right.$ and $\left.Z_{2}\right)$.
$Z_{1}=1$ occurs every time the input sequence 100 is completed, provided that the sequence 010 has never occurred,
$Z_{2}=1$ occurs every time the sequence 010 is completed.

$$
\begin{aligned}
& X=1001100101010010110100 \\
& Z_{1}=0010001000000000000000 \\
& Z_{2}=0000000010101001000010
\end{aligned}
$$

Example 3 - Complex sequence detector

$Z_{1}=1$ if 100 occurs, provided that 010 has never occurred,
$Z_{2}=1$ if sequence 010 occurs.

Example 3 - Complex sequence detector

	Next state		Output $Z_{1} Z_{2}$	
State	$X=0$	$X=1$	$X=0$	$X=1$
S_{0}	S_{3}	S_{1}	00	00
S_{1}			00	00
S_{2}			10	00
S_{3}			00	00
S_{4}			01	00
S_{5}			00	00
S_{6}			01	00
S_{7}	S_{5}	S_{7}	00	00

Example 4

A Moore circuit should have an output of $Z=1$ if
\rightarrow The total number of 0 's received is an even number greater than 0
\rightarrow and provided that two consecutive 1's have never been received.

$$
\begin{aligned}
& X=00001010110000 \\
& Z=
\end{aligned}
$$

To start, consider only 0 inputs. The graph should give 1 if the total number of 0 is even and greater than 0 .

Example 4

Add states to the graph so that starting from S_{0}, if 2 consecutive 1 's are received the output will remain 0 .

$S_{3} \quad S_{4}$

Example 4

Now complete the graph so that each state has both a 0 and 1 arrow leading away from it.

Next class...

- Reduction of state tables state assignment
- Please read Lecture 31

ECE 210
Introduction to Digital Logic Design

Lecture 31
 Minimizing Finite State Machines

Redundant States

The first step in designing a sequential circuit is to derive a sate table.
Before we realize the state table using FF, reduction of the sates table to a minimum number of states is desirable.

A circuit with 9 states needs 4 FF,
A circuit with 8 states needs $F F$,
A circuit with 6 states still needs FF, but we would introduce don't cares terms.

Redundant States

Design a sequential network that examines groups of 4 bits and produces an output $Z=1$ if the input sequences 0101 or 1001 occur.

The network resets after 4 input values; typical sequences are:

$$
\begin{array}{lllll}
X= & 0101 & 0010 & 1001 & 0101 \\
Z= & & & &
\end{array}
$$

We will analyse the problem without being concern with introduction of too many states, and later we will reduce them.

Sequence detector - 0101 or 1001

Input	Current	Next state		Present output	
sequence	state	$X=0$	$X=1$	$X=0$	$X=1$
reset	S_{0}			0	0
0	S_{1}			0	0
1	S_{2}			0	0
00	S_{3}			0	0
01	S_{4}	S_{9}	S_{10}	0	0
10	S_{5}	S_{11}	S_{12}	0	0
11	S_{6}	S_{13}	S_{14}	0	0
000	S_{7}	S_{0}	S_{0}	0	0
001	S_{8}	S_{0}	S_{0}	0	0
010	S_{9}	S_{0}	S_{0}	0	1
011	S_{10}	S_{0}	S_{0}	0	0
100	S_{11}	S_{0}	S_{0}	0	1
101	S_{12}	S_{0}	S_{0}	0	0
110	S_{13}	S_{0}	S_{0}	0	0
111	S_{14}	S_{0}	S_{0}	0	0

Sequence detector

Eliminate redundant states using tow matching technique
Ex: S_{7} and S_{8} are identical and can be merged

Input	Current		Next state		Present output	
sequence	state	$x=0$		$X=1$	$X=0$	

Sequence detector

Which states are equivalent ?

Input seq	S	S^{+}		Z	
		0	1	0	1
reset	S_{0}	S_{1}	S_{2}	0	0
0	S_{1}	S_{3}	S_{4}	0	0
1	S_{2}	S_{5}	S_{6}	0	0
00	S_{3}	S_{7}	S_{8}	0	0
01	S_{4}	S_{9}	S_{10}	0	0
10	S_{5}	S_{11}	S_{12}	0	0
11	S_{6}	S_{13}	S_{14}	0	0
000	S_{7}	S_{0}	S_{0}	0	0
001	S_{8}	S_{0}	S_{0}	0	0
010	S_{9}	S_{0}	S_{0}	0	1
011	S_{10}	S_{0}	S_{0}	0	0
100	S_{11}	S_{0}	S_{0}	0	1
101	S_{12}	S_{0}	S_{0}	0	0
110	S_{13}	S_{0}	S_{0}	0	0
111	S_{14}	S_{0}	S_{0}	0	0

Example - Continued

Reduced state table
Can it still be simplified ?

Input seq	S		S^{+}		Z	
reset	S_{0}	S_{1}	S_{2}	0	0	
0	S_{1}	S_{3}	S_{4}	0	0	
1	S_{2}	S_{5}	S_{6}	0	0	
00	S_{3}	S_{7}	S_{7}	0	0	
01	S_{4}	S_{9}	S_{7}	0	0	
10	S_{5}	S_{9}	S_{7}	0	0	
11	S_{6}	S_{7}	S_{7}	0	0	
000	S_{7}	S_{0}	S_{0}	0	0	
010	S_{9}	S_{0}	S_{0}	0	1	

$S_{3} \equiv S_{6}$
$S_{4} \equiv S_{5}$

State graph

Input seq	S		S^{+}		Z	
reset	S_{0}	S_{1}	S_{2}	0	0	
0	S_{1}	S_{3}	S_{4}	0	0	
1	S_{2}	S_{4}	S_{3}	0	0	
00	S_{3}	S_{7}	S_{7}	0	0	
01	S_{4}	S_{9}	S_{7}	0	0	
000	S_{7}	S_{0}	S_{0}	0	0	
010	S_{9}	S_{0}	S_{0}	0	1	

Equivalent states

Two states are equivalent if there is no way of telling them apart by observing their inputs and outputs.
\rightarrow Row matching technique is not sufficient to find all equivalent states
\rightarrow Consider the case when you can observe only the circuit inputs and outputs, not the state diagram.
\rightarrow States are equivalent if for identical inputs they produce identical outputs

Equivalent states

Let $\underline{x}=x_{0} x_{1} \ldots x_{n}$ be an input sequence of arbitrary length n.
States p and q are equivalent if and only if

$$
z_{p}=(p, x)=z_{q}=(q, x) \quad \forall \underline{x}
$$

$\rightarrow z_{p}$ is an output sequence when starting in state p and applying \underline{x}
$\rightarrow z_{q}$ is an output sequence when starting in state q and applying \underline{x}
The following input sequences have to be tested:
(1) 0 and 1
(2) $00,01,10$, and 11
(3) 000, 001, 010, 011, ... 111
(4) $0000,0001, \ldots$
(5) etc., until the maximum length of the input

Equivalent states

Two states, p and q, are equivalent if for every input x, their outputs are the same and their next states are equivalent.
$z_{p}=(p, x)=z_{q}=(q, x)$ and next state of p for x is equal to next state of q for x
x is an input, and z_{p} and z_{q} are output generate by the circuit when applying x for states p and q respectively

If $p_{1} \equiv q_{1}$ and $p_{2} \equiv q_{2}$ then $p \equiv q$

Equivalent states

Two states, p and q, are equivalent if for every input x, their outputs are the same and their next states are equivalent.

Input seq	S	S^{+}		Z				
		0	1	0	1			
S_{3} and S_{4} are equivalent if $S_{7} \equiv S_{9}$ and								
reset	S_{0}	S_{1}	S_{2}	0	0			$S_{8} \equiv S_{10}$. Since S_{7} and S_{9} have different
:---								
0	S_{1}							

Implication table

Equivalent states can be determined using an implication table
Aim: Find equivalent states by checking each pair of states
\rightarrow Non-equivalent pairs of states are found and eliminated,
\rightarrow Only equivalent pairs of states remain

Present	Next state		Present
state	$x=0$	$x=1$	output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Implication table

Implication table

Implication table

Implication table

Equivalent States

Use equivalent states to modify the original state table

Present state	$\begin{array}{r} \mathrm{Ne} \\ x=0 \end{array}$	state $x=1$	Present output
a	d	c	0
b	f	h	0
c	e	d	1
d	a	e	0
e	c	a	1
f	f	b	1
g	b	h	0
h	c	g	1

Present	Next state		Present
state	$x=0$	$x=1$	output
ad	$a d$	$c e$	0
b	f	h	0
$c e$	$c e$	$a d$	1
f	f	b	1
g	b	h	0
h	$c e$	g	1

Example 2

Reduce the state graph to a minimum number of states

Example 2 - Continued

Reduce the state graph to a minimum number of states

Example 2 - Continued

Complete the simplified state graph

Example 3

Reduce the state graph to a minimum number of states

Example 3 - Continued

Reduce the state graph to a minimum number of states

Example 3 - Continued

Complete the simplified state graph

Next class...

- Serial code converter
- Please read Lecture 32

ECE 210
Introduction to Digital Logic Design

Lecture 32
 Serial Code Converter

Design Example

We will design a sequential $B C D$ to Excess-3 code converter.
4-bits numbers will be converted sequentially
Conversion will be performed bit-by-bit starting with the LSB

decimal	BCD	Excess-3			
0	0000	0011			
1	0001	0100			
2	0010	0101	0100	sequential	0111
3	0011	0110		network	
4	0100	0111			
5	0101	1000			
6	0110	1001			
7	0111	1010			
8	1000	1011			
9	1001	1100			

Bit-by-bit conversion example
\rightarrow Consider the input 0000
$\rightarrow A$ is the reset state

decimal	BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

State graph

S	S^{+} $x=0,1$	Z $x=0,1$
A	$B C$	10
B	$D F$	10
C	$E G$	01
D	$H L$	01
E	$I M$	10
F	$J N$	10
G	$K P$	10
H	$A A$	01
I	$A A$	01
J	$A \times$	$0 \times$
K	$A \times$	$0 \times$
L	$A \times$	$0 \times$
M	$A \times$	$1 \times$
N	$A \times$	$1 \times$
P	$A \times$	$1 \times$

Minimized state graph

S	S^{+} $x=0,1$	Z $x=0,1$
A	$B C$	10
B	$D E$	10
C	$E E$	01
D	$H H$	01
E	$H M$	10
H	$A A$	01
M	$A \times$	$1 \times$

Transition table for Flip-flops

S	S^{+}	Z
$x=0,1$	$x=0,1$	

A	$B C$	10
B	$D E$	10
C	$E E$	01
D	$H H$	01
E	$H M$	10
H	$A A$	01
M	$A \times$	$1 \times$

$Q_{2} Q_{3}$				
Q_{1}		01	11	10
0	A		H	M
1	B	C	D	E

\leftarrow States are given adjacent assignments in order to simplify the next state function.

Transition maps

	$X Q_{1}$			
00	1	1	1	1
01	\times	1	1	\times
11	0	0	0	0
10	0	0	0	X

$D_{1}=Q_{1}^{+}=\overline{Q_{2}}$

$X Q_{1}$				
$Q_{2} Q_{3}$	00	01	11	10
00	0	1	0	1
01	\times	0	0	\times
11	0	1	1	0
10	0	1	0	\times

$X Q_{1}$				
$Q_{2} Q_{3}$	00	01	11	10
00	1	1	0	0
01	\times	0	1	\times
11	0	0	1	1
10	1	1	0	\times

$$
D_{3}=Q_{3}^{+}=Q_{1} Q_{2} Q_{3}+\bar{X} Q_{1} \overline{Q_{3}}+X \overline{Q_{1}} \overline{Q_{2}} \quad Z=\bar{X} \overline{Q_{3}}+X Q_{3}
$$

Code converter circuit

Serial Adder

We will design a circuit that adds two numbers A and B, bit-by-bit.
$\rightarrow A=a_{n} a_{n-1} a_{n-2} \ldots a_{0}$
$\rightarrow B=b_{n} b_{n-1} b_{n-2} \ldots b_{0}$
The circuit outputs the sum $S_{i}=a_{i}+b_{i}$.

State diagram

State diagram of a Moore sequential adder.
Inputs: a_{i} and b_{i}.
Output: Sum.

State table and map

Current	Next state $C^{+} S^{+}$				Output
state CS	$a b=00$	01	11	10	z
00	00	01	10	01	0
01	00	01	10	01	1
11	01	10	11	10	1
10	01	10	11	10	0

K-maps for D-flip-flops

		01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	1	1	1
10	0	1	1	1

$D_{0}=Q_{0}^{+}=a b+a C+b C$

		01	11	10
00	0	1	0	1
01	0	1	0	1
11	1	0	1	0
10	1	0	1	0
$D_{1}=Q_{1}^{+}=a \oplus b \oplus C$				

Serial adder circuit

Parallel adder implementation - From Lecture 19

Serial vs parallel adder

Next class...

- Design example
- Please read Lecture 33

ECE 210

Introduction to Digital Logic Design

Lecture 33
 Design Examples

Example 1 - Vending machine

Release item after \$3 are deposited
Single coin slot for loonie (1\$) and toonie (2\$)
No change

Example 1

Moore machine state graph
$\rightarrow 3$ loonies ($3 \times \$ 1$)
\rightarrow Loonie + toonie $(\$ 1+\$ 2)$
\rightarrow Toonie + loonie (\$2 + \$1)
\rightarrow Two loonies (\$2+\$2)

Inputs: L and T

Example 1

Minimize the number of states

present state	inputs $L T$	next state	output
$0 \$$	00	$0 \$$	0
	01	$1 \$$	0
	10	$2 \$$	0
$1 \$$	11	\times	0
	00	$1 \$$	0
	01	$2 \$$	0
	10	$3 \$$	0
$2 \$$	11	\times	0
	00	$2 \$$	0
	01	$3 \$$	0
	10	$2 \$$	0
$3 \$$	11	\times	0
	\times	\times	1

Example 1

Transition maps using D-FF

$Q_{1} Q_{0}$	inputs	next	
00		$Q_{1}^{+} Q_{0}^{+}$	z
	00	00	0
	01	01	0
	10	10	0
	11	\times	0
	00	01	0
	01	10	0
	10	11	0
	11	\times	0
	00	10	0
	01	11	0
	10	10	0
	11	\times	0
		\times	1

, ${ }_{1} Q^{2}$									
$T L$		01	11	10	$T L$		01	11	10
00			1	1	00		1	1	
01			1	1	01	1		1	1
11	\times	\times	\times	\times	11	\times	\times	\times	\times
10	1	1	1	1	10		1	1	1
			D_{1}						
$T L$		01	11	10					
00									
01									
11	\times	\times	\times	\times	Z				
10									

$D_{0}=$
$D_{1}=$

Example 1

Circuit implementation

$$
\begin{aligned}
& D_{1}=Q_{1}+D+Q_{0}+L \\
& D_{0}=\bar{Q}_{0} L+Q_{0} \bar{L}+Q_{1} L+Q_{1} T \\
& Z=Q_{0} Q_{1}
\end{aligned}
$$

Example 2 - Road construction electric sign

Design a Mealy machine to drive the electric sign used for detours during road constructions.

The sign should display the sequence shown below when the input D is zero.
The arrow should blink (alternate between state 0 and 3) when $D=1$.

Example 2 - Road construction electric sign

Design a Moore machine to drive the electric sign used for detours during road constructions.

The sign should display the sequence shown below when the input X is zero. When the input X is 1 and the system is not in state 1 , the sequence should be carried on until state 3 is reached. The arrow should then blink (alternate between states 0 and 3).

Example 2

Output assignment
Group the LED's that are only activate simultaneously

Output abcdex $x_{0} x_{1} x_{2}$:

$$
\begin{gathered}
00000000 \rightarrow 10100100 \rightarrow 11101010 \rightarrow 11111001 \\
0 \rightarrow \mathrm{~A} 4 \rightarrow \mathrm{EA} \rightarrow \mathrm{~F} 9
\end{gathered}
$$

Example 2

Present state	next state	output		Present state	next state	output
	$X=0,1$			Q $Q_{0} Q_{1}$	$X=0,1$	
S_{0}	$S_{1} S_{3}$	0		00	0110	0
S_{1}	$S_{2} S_{2}$	A4		01	1111	A4
S_{2}	$S_{3} S_{3}$	EA		11	1010	EA
S_{3}	$S_{0} S_{0}$	F9		10	0000	F9

Example 2

Present	next	output	
state	state	z	
$Q_{0} Q_{1}$	$X=0,1$		
00	0110	0	$D_{0}=$
01	1111	A4	
11	1010	EA	
10	0000	F9	

$D_{1}=$

Example 2

Example 2

The end

