ECE 210 Introduction to Digital Logic Design

Lecture 22 Storage Elements: Latches

イロト イポト イヨト イヨト 一臣

Categories of digital networks - Review (Lecture 1)

• Combinational: Output values depend only on *present* input values.

• Sequential: Output values depend on both present and past inputs.

《曰》《聞》《臣》《臣》 三臣

Latches and flip-flops are the simplest types of sequential circuits.

Latches:

- \rightarrow Latches are asynchronous,
- \rightarrow The output changes when the input changes.

Flip-flops:

 \rightarrow A flip-flop is a synchronous version of the latch,

 \rightarrow The outputs of all the sequential circuits change simultaneously to the rhythm of a global clock signal.

Timing diagrams

In sequential switching networks, the output depends not only on the present state, but also on the past *sequence* of inputs.

Timing diagram - assume ideal signals

-

• • • • • • • • •

Basic memory latch

Latch is a circuit's ability to **remain** at a particular logic level after having been driven to that state by an external signal.

(a) Initial conditions

- (b) Feedback: S = 0 feeds back to keep Q =
- (c) S = 1, feeds back $\therefore Q =$
- (d) S returns to 0, then

イロト イタト イヨト イヨト 一日

NOR gate latch - Set/Reset

forbidden

(日) (部) (王) (王) (王)

NOR gate latch - Set/Reset

The circuit has 2 stable states for the same inputs, and they depend on the past sequence of inputs.

$$S=0$$

$$S=0$$
 $R=0$ $Q=1$

Notice that the output of the first gate is \overline{Q} .

臣

Set-Reset Latch

Function table:

		Nex	t states
R	S	Q	\overline{Q}
0	0		
0	1		
1	0		
1	1	×	×

- 1 2 inputs, 2 outputs
- $o S = 1 \rightarrow$

イロト イポト イヨト イヨト 一臣

S-R Latch Operation Summary

- \rightarrow Both inputs 0 : no change
- \rightarrow Set input momentarily 1: Q goes to 1
- \rightarrow Reset input momentarily 1: Q goes to 0
- \rightarrow Reset and reset made 1: Indeterminate state

S	R	Q	Q^+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	\sim

S	R	Q^+
0	0	Q
0	1	0
1	0	1
1	1	×

SR Latch characteristic equation

K-map for Q^+

S	R	Q	Q^+	$\sim S$	0	1	
0	0	0	0	KQ	0		I
0	0	1	1	00	0	1	
0	1	0	0				
0	1	1	0	01	1	1	
1	0	0	1				
1	0	1	1	11	0	×	
1	1	0	×	10	0		
1	1	1	×	10	U		

$$Q^+ = S + \overline{R}Q$$

 $Q(t + \epsilon) = S(t) + \overline{R(t)}Q(t)$

(日) (個) (E) (E) (E)

S and R not allowed to be 1 at the same time.

SR latch example

◆□ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

ECE 210 - C. Rossa

11/18

Timing diagram for S-R latch

ECE 210 - C. Rossa

(日)

SR Latch with control input

(日)

En	S	R	Q^+
0	×	×	
1	0	0	
1	0	1	
1	1	0	
1	1	1	forbidden

D latch - Transparent latch

Ensures that S and R are never equal 1 at the same time.

The *D* latch can hold *Data* in its internal storage.

En	D	Next state
0	×	$Q^+ = Q$ (no change)
1	0	$Q^+ = 0 = D$
1	1	$Q^+ = 1 = D$

★ E > < E >

D latch - Transparent latch

From the truth table the characteristic equation for the D-latch is :

$$Q^+ = \overline{E_n}Q + E_nD$$

臣

Timing diagram for D latch

ECE 210 - C. Rossa

16 / 18

(日)

Timing diagram for D latch

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Next class...

- Flip-flops
- Please read Lecture 23

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

ECE 210 Introduction to Digital Logic Design

Lecture 23 Storage Elements: Flip-Flops

イロト イポト イヨト イヨト 一臣

Flip-flops vs Latches

- \rightarrow A latch responds to a change in the *level* of a signal (a),
- \rightarrow A flip-flop is a synchronous version of the latch,
- \rightarrow A flip-flop triggers only during a signal *transition* (b-c).
- \rightarrow The outputs change to the rhythm of a global clock signal.

3 K K 3 K

Set-Reset Latch (review)

Function table:

R	S	Q^+	$\overline{Q^+}$
0	0	Q	Q^+
0	1	1	0
1	0	0	1
1	1	×	×

Properties:

• $S = 1 \rightarrow$ • $R = 1 \rightarrow$ • $S = R = 1 \rightarrow$ indeterminate state $Q^+ = S + \overline{R}Q$

 $R = S = 1 \rightarrow$ forbidden input

臣

D latch - Transparent latch (review)

Ensures that S and R are never equal 1 at the same time.

The *D* latch can hold *Data* in its internal storage.

$E_n D$	Next state
$egin{array}{ccc} 0 & imes \ 1 & 0 \ 1 & 1 \end{array}$	$Q^+ = Q$ (no change) $Q^+ = 0 = D$ $Q^+ = 1 = D$

Characteristic equation:

$$Q^+ = \overline{E_n}Q + E_nD$$

4/18

Edge-Triggered D Flip-flop

Unlike the D-latch, the D-flip flop output changes in response to a 0 to 1 **transition** on the **clock signal**.

We say that the flip-flop is triggered on the *rising edge* (or positive edge) of the clock signal.

D flip-flops can be constructed from two D-latches

Edge-Triggered D Flip-flop

Edge-Triggered D Flip-flop

The state of a D flip-flop **after** the active clock edge is equal to the input D **before** the active edge.

The output changes are delayed until after the active edge of the clock pulse.

The characteristic equation is $Q^+ = D$.

Falling edge trigger:

SR Flip-flop

An SR flip-flop is similar to an SR latch:

- ightarrow S=1 sets the output to 1
- ightarrow R = 1 resets the output to 0

But: The flip-flop has a clock-input: The output changes only after an active clock edge.

 $S = R = 1 \rightarrow \text{not allowed}.$

SR Flip-flop

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

SR Flip-flop

Operation summary:

- \rightarrow S = R = 0 no state change
- \rightarrow S = 1, R = 0 sets Q to 1 after active Ck edge
- \rightarrow S = 0, R = 1 resets the output to 0 after active Ck edge
- \rightarrow S = R = 1 not allowed

How do we ensure that S and R are never 1 at the same time ?

副 🖌 🖉 🖿 🖌 🖷 🕨 👘

JK Flip-flop

Same circuit as for the SR flip-flop, except that

- \rightarrow S and R have been replaced with J and K
- ightarrow Q and \overline{Q} are feeding back into the input
- \rightarrow Only one of S and R inputs can be 1 at the same time

$$ightarrow$$
 If $J=K=1$, $Q^+=1$

JK Flip-flop

The JK flip-flop is an extended version of SR flip-flop:

 \rightarrow J corresponds to S

1

0

 \rightarrow K corresponds to R S_1 Q_1 S_2 Q_{j} LCLK LΚ-Κ Q^+ J Q 0 0 0 0 0 0 1 1 0 1 0 0 Q0 1 1 0 Ck 1 0 0 1 $Q^+ = J\overline{Q} + \overline{K}Q$ 1 0 1 1 Κ 1 1 0 1 1 1

臣

個 ト イヨ ト イヨト

-Q

JK Flip-flop

Lecture 23

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

T Flip-flop

The T flip-flop or toggle flip-flop is often used in building counters.

When T = 1 the flip-flop changes state after the active edge of the clock. When T = 0 no change occurs.

$$Q^+ = T\overline{Q} + \overline{T}Q = T \oplus Q$$

14/18

T flip-flop

Timing diagram for T flip-flop.

Rising edge trigger

Falling edge trigger

(日)

T flip-flop

T flip-flops connected in a cascade mode.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Summary

_

Device	Characteristic equation
SR latch and flip-flop	$Q^+ = S + \overline{R}Q$
D-latch	$Q^+ = E_n D + \overline{E_n} Q$
D flip-flop	$Q^+ = D$
JK flip-flop	$J\overline{Q} + \overline{K}Q$
T flip-flop	$Q^+ = T \oplus Q = T \overline{Q} + \overline{T} Q$

< □ > < @ > < E > < E > E の Q @ 17/18

Next class...

- Binary counters
- Please read Lecture 24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで
ECE 210 Introduction to Digital Logic Design

Lecture 24 Design of Binary Counters

イロト イポト イヨト イヨト 一臣

Counts pulses and displays count in binary form

- \rightarrow Implemented with flip-flops (*FF*),
- \rightarrow Pulses (input *P*) go to clock input of the *FF*,

 \rightarrow The counters discusses here are synchronous (all FF change state simultaneously),

 \rightarrow Ripple counter: A *FF* triggers the next *FF* (not discussed).

 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow ... \rightarrow 111 \rightarrow 000$

Lecture 24

Next state table

Cu	rrent	state	N	Next state				
Α	В	С	A^+	B^+	\mathcal{C}^+			
0	0	0	0	0	1			
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Synchronous counter

Using T flop-flops

- \rightarrow Three T flip-flops are used,
- \rightarrow Objective: Determine the inputs to each *FF* (i.e., *T_A*, *T_B*, and *T_C*),

1

Next state table using T flip-flops

Current state			N	Next state				FF inputs			
A	В	С	A^+	A^+ B^+ C^+			T_A	T_B	T _C		
0	0	0	0	0	1						
0	0	1	0	1	0						
0	1	0	0	1	1						
0	1	1	1	0	0						
1	0	0	1	0	1						
1	0	1	1	1	0						
1	1	0	1	1	1						
1	1	1	0	0	0						

 \rightarrow T = 0 no change

 \rightarrow T = 1 toggles output

K-maps for T_A and T_B

Cu	rrent	state	FF ir	puts
Α	В	С	T_A	T _B
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

Logic diagram

State diagram

イロト イポト イヨト イヨト

æ

Binary counter - Incomplete sequence

Assume that the state ABC = 111 is missing.

ECE 210

Lecture 24

æ

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Binary counter - Incomplete sequence

Solve for T_B and T_C .

御 とくきとくきと

æ

Counters for arbitrary sequences

The sequence of states of a counter is not always in straight binary order. Design a counter for the sequence given in the state graph using T flip-flops

Cu	rrent	state	N	ext sta	state		
Α	В	С	A^+	B^+	C^+		
0	0	0	1	0	0		
0	0	1					
0	1	0	0	1	1		
0	1	1	0	0	0		
1	0	0	1	1	1		
1	0	1					
1	1	0					
1	1	1	0	1	0		

3 1 4 3 1

Counters for arbitrary sequences

 \rightarrow Start from the next state K-maps. Derive the T inputs from them.

11/17

Counters for arbitrary sequences

Lecture 24

Counters design using T flip-flops

- \rightarrow Form a state table which gives the next FF states;
- \rightarrow Plot the next-state maps from the table;
- \rightarrow Plot a *T* input map for each *FF*. *T* is 1 whenever $Q^+ \neq Q$ and 0 otherwise;
- \rightarrow Find the T input equations from the maps and realize the circuit.

Note that although the original state table may not be completely specified, the actual design must specify all states using don't care conditions.

When the FF's are turned on, their initial states may be unpredictable.

All of the don't care states should be checked to make sure that they eventually lead into the main counting sequence.

Counter design using D flip-flops

- \rightarrow For a *D* flip-flop, $Q^+ = D$.
- \rightarrow The D input map is identical to the next-state map.
- \rightarrow The equation for *D* can be read from the Q^+ map.

Q	Q+	D
0	0	
0	1	
1	0	
1	1	

(日)

Counter design using D flip-flops

ECE 210

Lecture 24

Counter design using D flip-flops

Lecture 24

Next class...

- Registers
- Please read Lecture 25

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

ECE 210 Introduction to Digital Logic Design

Lecture 25 Registers

Lecture 25

 \rightarrow A resister is a group of Flip-Flops that are used as a single unit to store a group of bits

 \rightarrow Several D Flip-Flops may be grouped together with a common clock to form a single register

 \rightarrow Each *FF* can store one bit of information in the output Q_i

Characteristic equations of D-flip flops: $Q^+ =$

Lecture 25

Registers

4-bit register with parallel load and mode control

Changes are triggered by the clock input on falling edge.

훈

Registers with CE input

Gating the clock with Load can cause timing problems.

- \rightarrow Load = 0: the clock is disable and the data is locked in the FF
- \rightarrow Load = 1: data will be loaded into FF following the falling edge

FF may have a common clear signal: CIrN = 0 resets all FF outputs to 0.

Shift registers

Right-shift register

- \rightarrow The stored data is shifted to the right on falling clock edge
- \rightarrow The input line is transferred to the output of the 1st FF;
- \rightarrow The output of 1st FF is transferred to the 2st FF;
- \rightarrow The process carries on until the last FF.

Shift register - timing diagram

Initial state is 0101.

→ < Ξ → < Ξ → </p>

æ

Shift registers

Serial vs parallel registers

 \rightarrow Serial registers take the data into the first FF one bit at a time.

 \rightarrow Serial registers provide output only in serial mode of the last FF. The output of the other FF are internal to the circuit.

- \rightarrow Parallel registers can load all bits at the same time;
- \rightarrow Parallel registers allow reading all bits at the same time;

Parallel shift registers are used to convert parallel data to serial data.

Parallel and serial register

Parallel-load serial out shift register

- \rightarrow *Mode* = 1 The resister serially inputs the data
- \rightarrow *Mode* = 0 The resister inputs the data in parallel form

Lecture 25

Universal shift register

Shift register can be used to convert serial to parallel data and vice versa.

- \rightarrow Data enters and exits serially by shifting the register
- \rightarrow Data entered in parallel can be taken out in serial

In a general shift register

- \rightarrow A clear line forces the register to 0
- \rightarrow A clock enable CE line leaves the information in the register unchanged
- \rightarrow A parallel load control enables conversion from parallel to serial

Applications:

- \rightarrow Transmission of data over a single line channel
- \rightarrow Adding binary numbers.

Lecture 25

Parallel adder with accumulator

Stores on number in a register of FF ($X = Q_3 Q_2 Q_1 Q_0$)

Adds a second number to it $(Y = y_4 y_3 y_2 y_1)$,

Leaves the result stored in the accumulator.

- * ロ ▶ * 母 ▶ * 臣 ▶ * 臣 * うへ)

Counters using S-R Flip-Flops

Next state table for a S - R flip-flop.

Q	Q^+	S	R	Current state		Next state				FF inputs		
	-			A	В	С	A^+	B^+	\mathcal{C}^+		S_C	R _C
0	0	0	×									
0	1	1	0	0	0	0	1	0	0		1	0
1	0	0	1	0	0	1	×	×	×		Х	×
1	1	×	0	0	1	0	0	1	1			
_	_		•	0	1	1	0	0	0			
				1	0	0	1	1	1			
				1	0	1	×	×	×		×	×
				1	1	0	×	X	×		×	×
				1	1	1	0	1	0		0	1

Counters using S-R Flip-Flops

ECE 210

Lecture 25

Counters using S-R Flip-Flops

æ

イロト イポト イヨト イヨト

Next class...

- Analysis of Clocked Sequential Circuits
- Please read Lecture 26

ECE 210 Introduction to Digital Logic Design

Lecture 26 Analysis of Clocked Sequential Circuits

▶ ★ 문 ▶ ★ 문 ▶ ... 문

Lecture 26

In sequential circuits the sequences of outputs generally depends on the input sequence.

To analyse the circuit we can

- \rightarrow Trace 0 and 1 signals through the circuit (timing diagram)
- \rightarrow Create a state state to represent the behaviour of the circuit

Design requires studying timing relationship between inputs, clock, and output

Serial transmission

Transmission on a communications channel between two machines can occur in several different ways.

The transmission is characterised by:

- \rightarrow The direction of the exchanges
- \rightarrow The transmission mode: the number of bits sent simultaneously
- \rightarrow Synchronization between the transmitter and receiver

• • = • • = • = •

Serial transmission

Synchronous transmission

 \rightarrow The transmitter and receiver are placed by the same clock.

 \rightarrow The receiver continuously receives the information at the same rate the transmitter sends it.

 \rightarrow Supplementary information is inserted to guarantee that there are no errors during transmission.

A B F A B F

-

Sequential parity checker

Consider a 7-bit code for information exchange

In serial transmission, an 8^{th} bit is added for error detection

- \rightarrow If the 8th bit makes total number of 1's odd : odd parity
- \rightarrow If the 8th bit makes total number of 1's even : even parity

8-bit wor	d
0000000	1
0000001	0
1100000	1
0100101	0

The parity bit can be chosen such that the parity is always even:

- ightarrow If any single bit changes during transmission, the parity is no longer checked.
- \rightarrow Transmission errors can be detected.

(日) (部) (종) (종) (종) (종)
The output should be

- ightarrow Z = 1 if the total number of 1 is odd
- \rightarrow Z = 0 if the total number of 1 is even

Transmission error occurs if

- \rightarrow Data had odd parity and the final output is Z = 0
- ightarrow Data had even parity and the final output is Z=1

A D F A B F A B F A B F

Lecture 26

State graph

- \rightarrow Circuit must remember whether the number of 1 inputs is odd or even
- \rightarrow Two states are required: \textit{S}_{0} and \textit{S}_{1}
- \rightarrow State S_0 means that the number of 1's is even: Z =
- ightarrow State S_1 means that the number of 1 's is odd: Z =

-

• • = • • = •

Implement the circuit using a JK flip-flop

(ロ) (部) (目) (目) (目) (目)

Lecture 26

State equations

A state equation specifies the next state as a function of the present state and inputs.

10/16

(日)

State table

A	١B	A^+B^+		AB	A^+B^+	
		<i>X</i> = 0	X = 1		<i>X</i> = 0	X = 1
(00	00	01	S_0		
(01	00	11	S_1		
1	L0	00	10	S_2		
1	11	00	10	S_3		

$$A^+ = X(A+B)$$

 $B^+ = \overline{A}X$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

State gragh (without output)

State equations

State equation for a JK-F: $Q^+ = J\overline{Q} + \overline{K}Q$.

$$J_A =$$

 $K_A =$

$$J_B =$$

 $K_B =$

$$A^+ =$$

 $B^+ =$

z = A

◆□▶ ◆舂▶ ◆理▶ ◆理▶ 三理…

State table

AB	A^+B^+		AB	A^+B^+	
	<i>X</i> = 0	X = 1		<i>X</i> = 0	X = 1
00	01	01	S_0		
01	01	01	S_1		
10	11	01	S_2		
11	11	00	S_3		

$$A^+ = \overline{X}A$$

$$B^+ = \overline{A} + \overline{B} + \overline{X}$$

State gragh (without output)

13/16

æ

> < 글 > < 글 >

State equations

State equation for a *TFF*: $Q^+ = T \oplus Q$.

14/16

State table

AB	$ $ A^+	A^+B^+		AB	A^+B^+	
	<i>X</i> = 0	X = 1			<i>X</i> = 0	X = 1
00	00	10		S_0		
01	11	01		S_1		
10	11	00		S_2		
11	00	11		S_3		

 $A^+ = A \oplus B \oplus X$

 $B^+ = B \oplus (A\overline{X})$

State gragh (without output)

15/16

Next class...

- Moore State Machines
- Please read Lecture 27

ECE 210 Introduction to Digital Logic Design

Lecture 27 Analysis of Moore State Machines

Lecture 27

イロト イポト イヨト イヨト 一臣

Categories of sequential circuits

Moore machine

- \rightarrow Output is a function of
 - The present state of FF's only

Mealy machine

- \rightarrow Output is a function of
 - The present state of *FF*'s
 - And the input to the circuit

イロト イタト イヨト イヨト 一日

Two methods for analysis of sequential circuits:

Using signal tracing and timing diagram

- \rightarrow This will work for small circuits
- \rightarrow Also used to design sequential circuits

Using state tables and graphs

 \rightarrow More convenient for large circuits

A B K A B K

Moore machine

Example 1: The output is a function of the present state of the FF only

• • • • • • • • •

臣

Moore machine: Changes only occur after active clock edge

æ

Using state tables and graphs

• Determine the FF input and output equations

Ø Derive the next state equations for each FF

③ Plot the next state K-map for each FF

Oreate a state table from step 2 or 3

A B F A B F

Lecture 27

Using state tables and graphs Example using Moore machine

Step 1 - FF input and output equations

$$J_A = K_A =$$

 $J_B = K_B =$

Z = B

• • = • • = •

훈

Using state tables and graphs Example using Moore machine

Step 2 - FF next state equations

$$A^+ = J_A \overline{A} + \overline{K}_A A$$

 $A^+ =$

A B K A B K

臣

Using state tables and graphs Example using Moore machine

Step 3 - Next state K-map for each FF

Using state tables and graphs Example using Moore machine

Step 4 - Transition table

	A^+	B^+	present
AB	<i>C</i> = 0	C = 1	output Z
00			
01			
11			
10			
			'

Timing chart from the transition table

Moore state graph.

A^+B^+				present	next state		
AB	<i>C</i> = 0	C = 1	Ζ	state	<i>C</i> = 0	C = 1	Ζ
00	00	11	0	S_0			
01	00	11	1				
11	11	10	1				
10	10	01	0				

Using state tables and graphs Example using Moore machine

FF input and output equations

 $D_A =$

$$D_B =$$

$$Z =$$

$$A^+ =$$

$$B^+ =$$

월 에 에 들 에 에 들 에

æ

Next state K-map for each FF

AB 0 0 1 1 00 00 010111111010A+ B+

 $A^{+} = X \oplus \overline{B}$ $B^{+} = X + A$ $Z = A \oplus B$

(日) (個) (E) (E) (E)

Transition table

$$\begin{array}{c|c} A^+B^+ & \text{present} \\ \hline AB & X = 0 & X = 1 & \text{output } Z \\ \hline 00 & & & \\ 01 & & & \\ 11 & & & \\ 10 & & & & \\ \end{array}$$

State table

present	next		
state	<i>X</i> = 0	X = 1	Z
S_0			
S_1			
S_2			
S_3			

present	next		
state	<i>X</i> = 0	X = 1	Ζ
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

Next class...

- Mealy state machines
- Please read Lecture 28

ECE 210 Introduction to Digital Logic Design

Lecture 28 Analysis of Mealy State Machines

Lecture 28

イロト イポト イヨト イヨト 一臣

Categories of sequential circuits

Moore machine

- \rightarrow Output is a function of
 - The present state of FF's only

Mealy machine

- \rightarrow Output is a function of
 - The present state of FF's
 - And the input to the circuit

イロト イタト イヨト イヨト 一日

Two methods for analysis of sequential circuits:

Using signal tracing and timing diagram

- \rightarrow This will work for small circuits
- \rightarrow Also used to design sequential circuits

Using state tables and graphs

 \rightarrow More convenient for large circuits

-

A B K A B K

Mearly machine

The output is a function of the present state, and of the input

æ

イロト イポト イヨト イヨト

Clock

С

Α

В

Ζ

Mearly machine: Changes occur after active clock edge and changes in the input

5/16

ъ

Analysis through state tables and graphs

• Determine the FF input and output equations

2 Derive the next state equations for each *FF*

3 Plot the next state K-map for each FF

Oreate the state table and graph

A B F A B F

Lecture 28

Using state tables and graphs Example using Moore machine

• • • • • • • • •

Step 1 - FF input and output equations

 $J_A = K_A =$

 $J_B = K_B =$

Z =

-

Using state tables and graphs Example using Moore machine

э

Lecture 28

Step 2 - FF next state equations

$$A^{+} = J_{A}\overline{A} + \overline{K}_{A}A$$
$$A^{+} =$$

 $B^+ =$
Using state tables and graphs Example using Mealy machine

Step 3 - Next state K-map for each FF

$$A^{+} = XB\overline{A} + \overline{X}A$$
$$B^{+} = X\overline{B} + \overline{X}B + \overline{A}B$$
$$Z = \overline{A}B\overline{X} + X\overline{B} + XA$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Using state tables and graphs

Step 4 - Transition table

	A^+B^+	-	output	Ζ
AB	<i>X</i> = 0	1	<i>X</i> = 0	1
00				
01				
11				
10				

æ

	A^+B^-	+	output	Ζ		A^+B^+	-	output	Ζ
AB	<i>X</i> = 0	1	<i>X</i> = 0	1	AB	<i>X</i> = 0	1	<i>X</i> = 0	1
00	00	01	0	1	 S_0			0	1
01	01	11	1	0	S_1			1	0
11	11	00	0	1	S_2			0	1
10	10	01	0	1	S_3			0	1

FF input and output equations

$$J = K =$$

D =

Z =

$$A^+ =$$

 $B^+ =$

(日)

$$A^{+} = B(A + X)$$

$$B^{+} = (\overline{A} \oplus X)\overline{B} + XB = \overline{A}\overline{B}\overline{X} + A\overline{B}X + XB$$

$$Z = B(A + X)$$

Lecture 28

ECE 210

Lecture 28

æ

・ 御 と ・ 臣 と ・ 臣 と

ECE 210

Lecture 28

æ

Next class...

- Sequence detector
- Please read Lecture 29

▲口 → ▲団 → ▲ 国 → ▲ 国 → ▲ 国

ECE 210 Introduction to Digital Logic Design

Lecture 29 Design of a Sequence Detector

イロト イポト イヨト イヨト 一臣

Sequence detector

Single input X, single output Z sequential circuit

Design a network so that any input sequence ending in 101 will produce an output Z = 1 coincident with the last 1.

The network should not reset

State graph

- \rightarrow The circuit assumes Mealy network representation
- \rightarrow Show the sequence of states and outputs in response to inputs

 $\begin{array}{rcl} X = & 0011011001010100 \\ Z = & 0000010000010100 \end{array}$

3 X X 3 X

э

Next state tables

Now we are ready to design a circuit which has the behaviour described above The system has 3 states: How many *FF* are needed?

Next state tables

Next-state maps for each *FF* and the output function *Z*. If D - FF is used, $Q^+ = D$.

(日) (部) (종) (종) (종) (종)

$$A^+ =$$

 $B^+ =$

Z =

ECE 210

Sequence detector circuit

Sequence detector with Moore machine

Let us now rework the previous example as a Moore machine. The circuit should output 1 only if the input 101 has occurred.

Moore vs Mealy state representation

State graph - Moore representation

For a Moore machine, the output is written with the state instead of with the transition between states.

★ E ► ★ E ► E

State tables

(日) (部) (종) (종) (종) (종)

State maps

$$\begin{array}{c|cccc} & A^+B^+ & \text{output} \\ \hline AB & X = 0 & 1 & Z \\ \hline 00 & 00 & 01 & 0 \\ 01 & 11 & 01 & 0 \\ 11 & 00 & 10 & 0 \\ 10 & 11 & 01 & 1 \end{array}$$

If
$$D - FF$$
 is used, $Q^+ = D$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ �� ◆

$$A^+ = B^+ = Z = Z$$

ECE 210

10/15

Sequence detector circuit - Moore machine

(日) (個) (E) (E) (E)

Rework the example using JK - FF

If
$$JK - FF$$
 is used, $Q^+ = J\overline{Q} + \overline{K}Q$.

JK - FF transition table

Q	Q^+	J	Κ
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

Transition maps - JK - FF

		A^+B^+					
	X =	= 0	X = 1				
AB	$J_A K_A$	$J_B K_B$	$J_A K_A$	$J_B K_B$			
00	0 ×	$0 \times$	0 ×	$1 \times$			
01	$1 \times$	$\times 0$	0 ×	\times 0			
11	$\times 1$	\times 1	× 0	\times 1			
10	× 0	$1 \times$	imes 1	$1 \times$			

ECE 210

13/15

Sequence detector circuit - Moore machine

 $J_A = \overline{X}B$ $J_B = X + A$ $Z = A\overline{B}$

$$K_A = X \oplus B$$
$$K_B = A$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Next class...

- Multiple input/output networks
- Please read Lecture 30

ECE 210 Introduction to Digital Logic Design

Lecture 30 Multiple Inputs and Outputs

イロト イポト イヨト イヨト 一臣

Sequential circuits may have multiple inputs and outputs

Consider as an example the following circuit

whose state graph is

Moore machine \rightarrow State table has single output column

Mealy machine \rightarrow State table has multiple output columns

	nex	t stat	e		preser	nt out	put	
State	$X_0X_1=00$	01	10	11	$X_0X_1=00$	01	10	11
S_0	S ₃	S_2	S_1	S_0	00	10	11	01
S_1	S_0	S_1	S_2	S_3	10	10	11	11
S_2	S ₃	S_0	S_1	S_1	00	10	11	01
S_3	<i>S</i> ₂	S_2	S_1	S_0	00	00	01	01

	nex	t stat	е		preser	t output		
State	$X_0 X_1 = 00$	01	10	11	$X_0 X_1 = 00$	01	10	11
S_0	S_3	S_2	S_1	S_0	00	10	11	01
S_1	S_0	S_1	S_2	S_3	10	10	11	11
S_2	S ₃	S_0	S_1	S_1	00	10	11	01
S ₃	S_2	S_2	S_1	S_0	00	00	01	01

The state table can be simplified by using decimal inputs and outputs

	next state				preser	nt out	put	
State	$X_0X_1=00$	01	10	11	$X_0X_1=00$	01	10	11
S_0	S ₃	S_2	S_1	S_0	0	2	3	1
S_1	S_0	S_1	S_2	S_3	2	2	3	3
S_2	S ₃	S_0	S_1	S_1	0	2	3	1
S_3	<i>S</i> ₂	S_2	S_1	S_0	0	0	1	1

	ne×	t stat	e		preser	resent output		
State	$X_0 X_1 = 00$	01	10	11	$X_0 X_1 = 00$	01	10	11
S_0 S_1 S_2 S_3	S ₃ S ₀ S ₃ S ₂	S_2 S_1 S_0 S_2	S_1 S_2 S_1 S_1	S_0 S_3 S_1 S_0	0 2 0 0	2 2 2 0	3 3 3 1	1 3 1 1

ECE 210

5/22

Lecture 30

æ

Example: Traffic light control

Design a circuit to control a pedestrian crosswalk traffic light.

Default state: green signal for cars

- If "walk button" is pressed:
- \rightarrow Signal turns yellow,
- \rightarrow Hold yellow signal for 5 seconds
- \rightarrow Signal turns red
- \rightarrow Hold red for 15 seconds
- \rightarrow Return to green

Reset 15s timer whenever walk button is pressed

٢	PUSH	
	BUTTON	
	FOR	
	Ŕ	
	- A	
U		J

6/22

Example - Continued

イロト イタト イヨト イヨト 一日

Circuit inputs

 \rightarrow walk button signal X.

Outputs: 3 traffic light outputs:

 \rightarrow green (G), \rightarrow yellow (Y), \rightarrow red (R).

Assume that a clock signal with a period of 5 seconds is available.

How many states are needed?

State graph

Input: Signal X.

Output: GYR

Clock signal period: 5 seconds.

Reset 15s timer whenever X = 1.

State table

	Next	output	
State	<i>X</i> = 0	X = 1	GYR
S_0	S_0	S_1	100
S_1	S_2	S_2	010
S_2	S_3	S_2	001
S_3	S_4	S_2	001
S_4	S_5	S_2	001
S_5	S_0	S_2	001

State table

	Next	state	output				
State	<i>X</i> = 0	X = 1	GYR				
S_0	S_0	S_1	100				
S_1	S_2	S_2	010				
S_2	<i>S</i> ₃	S_2	001				
S_3	S_4	S_2	001				
S_4	S_5	S_2	001				
S_5	S_0	S_2	001				
	A^+B	$^{+}C^{+}$	output				
ABC	<i>X</i> = 0	X = 1	GYR				
000	000	001	100				
001	010	010	010				
010	$0\ 1\ 1$	010	001				
011	100	010	001				
100	101	010	001				
101	000	010	001				
110	$\times \times \times$	$\times \times \times$	$\times \times \times$				
111	$\times \times \times$	$\times \times \times$	$\times \times \times$				
				 ₹ Ξ + < Ξ + 	1	୬୯୯	10/

State maps

If T FF's are used, $Q^+ = T \oplus Q$.

Q	Q^+	Т
0	0	0
0	1	1
1	0	1
1	1	0

	$A^+B^+C^+$		output
ABC	X = 0	X = 1	GYR
000	000	001	100
001	010	010	010
010	011	010	001
$0\ 1\ 1$	100	010	001
100	101	010	001
$1 \ 0 \ 1$	000	010	001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
$1\ 1\ 1$	$\times \times \times$	$\times \times \times$	$\times \times \times$

	$A^+B^+C^+$		output
ABC	X = 0	X = 1	GYR
-	$T_A T_B T_C$	$T_A T_B T_C$	
000	0 0 0	0 0 1	100
001	0 1 1	0 1 1	010
010	001	0 0 0	001
011	$1 \ 1 \ 1$	0 0 1	001
100			001
101			001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
$1 \ 1 \ 1$	$\times \times \times$	$\times \times \times$	$\times \times \times$

State K-maps

	A^+B	output	
ABC	X = 0	X = 1	GYR
	$T_A T_B T_C$	$T_A T_B T_C$	
000	0 0 0	0 0 1	100
001	011	0 1 1	010
010	001	0 0 0	001
011	1 1 1	0 0 1	001
100	001	1 1 0	001
$1 \ 0 \ 1$	101	$1 \ 1 \ 1$	001
110	X X X	$\times \times \times$	$\times \times \times$
$1 \ 1 \ 1$	$\times \times \times$	$\times \times \times$	$\times \times \times$

$$T_{A} = AX + AC + BC\overline{X}$$
$$T_{B} = AX + \overline{A}C\overline{X} + \overline{B}CX$$
$$T_{C} = C + A\overline{X} + B\overline{X} + \overline{A}\overline{B}X$$

Output K-maps

	A^+B	output	
ABC	X = 0	X = 1	GYR
	$T_A T_B T_C$	$T_A T_B T_C$	
000	000	0 0 1	100
001	0 1 1	$0\ 1\ 1$	010
010	001	0 0 0	001
011	1 1 1	0 0 1	001
100	001	1 1 0	001
$1 \ 0 \ 1$	101	$1 \ 1 \ 1$	001
110	$\times \times \times$	$\times \times \times$	$\times \times \times$
$1\ 1\ 1$	$\times \times \times$	$\times \times \times$	$\times \times \times$

 $G = \overline{A} \overline{B} \overline{C}$ $Y = \overline{A} \overline{B} C$ R = A + B

イロト イヨト イヨト イヨト

13/2

æ

13/22
Traffic light circuit

X T_A ACk T_B B- G Ck - Y T_C CCk

Check the don't care states.

R

State table

When the *FF*'s are turned on, their initial states may be unpredictable. Don't care states: S_6 and S_7 .

æ

A sequential circuit has one input (X) and two outputs $(Z_1 \text{ and } Z_2)$.

 $Z_1 = 1$ occurs every time the input sequence 100 is completed, provided that the sequence 010 has never occurred,

 $Z_2 = 1$ occurs every time the sequence 010 is completed.

A (2) A (3) A (3) A (3) A (3)

Example 3 - Complex sequence detector

 $Z_1 = 1$ if 100 occurs, provided that 010 has never occurred,

 $Z_2 = 1$ if sequence 010 occurs.

Lecture 30

17 / 22

Example 3 - Complex sequence detector

	Next	state	Output Z_1Z_2		
State	<i>X</i> = 0	X = 1	<i>X</i> = 0	X = 1	
S_0	<i>S</i> ₃	S_1	00	00	
S_1			00	00	
S_2			10	00	
S_3			00	00	
S_4			01	00	
S_5			00	00	
S_6			01	00	
S_7	S_5	S_7	00	00	

Lecture 30

æ

イロト イポト イヨト イヨト

A Moore circuit should have an output of Z = 1 if

- \rightarrow The total number of 0's received is an even number greater than 0
- \rightarrow and provided that two consecutive 1's have never been received.

To start, consider only 0 inputs. The graph should give 1 if the total number of 0 is even and greater than 0.

• • • • • • • • •

Add states to the graph so that starting from S_0 , if 2 consecutive 1's are received the output will remain 0.

Now complete the graph so that each state has both a 0 and 1 arrow leading away from it.

Next class...

- Reduction of state tables state assignment
- Please read Lecture 31

ECE 210 Introduction to Digital Logic Design

Lecture 31 Minimizing Finite State Machines

イロト イポト イヨト イヨト 三臣

The first step in designing a sequential circuit is to derive a sate table.

Before we realize the state table using FF, reduction of the sates table to a minimum number of states is desirable.

A circuit with 9 states needs 4 FF,

A circuit with 8 states needs FF,

A circuit with 6 states still needs FF, but we would introduce don't cares terms.

Lecture 31

Redundant States

Design a sequential network that examines groups of 4 bits and produces an output Z = 1 if the input sequences 0101 or 1001 occur.

The network resets after 4 input values; typical sequences are:

 $X = 0101 \quad 0010 \quad 1001 \quad 0101$ Z =

We will analyse the problem without being concern with introduction of too many states, and later we will reduce them.

(日) (部) (종) (종) (종) (종)

Lecture 31

Sequence detector - 0101 or 1001

Input	Current	Next	state	Present output		
sequence	state	<i>X</i> = 0	X = 1	<i>X</i> = 0	X = 1	
reset	S_0			0	0	
0	S_1			0	0	
1	S_2			0	0	
00	S_3			0	0	
01	S_4	S_9	S_{10}	0	0	
10	S_5	S_{11}	S_{12}	0	0	
11	S_6	S_{13}	S_{14}	0	0	
000	S_7	S_0	S_0	0	0	
001	S_8	S_0	S_0	0	0	
010	S_9	S_0	S_0	0	1	
011	S_{10}	S_0	S_0	0	0	
100	S_{11}	S_0	S_0	0	1	
101	S_{12}	S_0	S_0	0	0	
110	S_{13}	S_0	S_0	0	0	
111	S_{14}	S_0	S_0	0	0	

Sequence detector

Eliminate redundant states using tow matching technique

Ex: S_7 and S_8 are identical and can be merged

Input	Current	Next	state	Present output		
sequence	state	X = 0	X = 1	X = 0	X = 1	
reset	S_0	S_1	S_2	0	0	
0	S_1	S_3	S_4	0	0	
1	S_2	S_5	S_6	0	0	
00	S_3	S_7	S_8	0	0	
01	S_4	S_9	S_{10}	0	0	
10	S_5	S_{11}	S_{12}	0	0	
11	S_6	S_{13}	S_{14}	0	0	
000	S ₇	S_0	S_0	0	0	
001	<i>S</i> ₈	S_0	S_0	0	0	
010	S_9	S_0	S_0	0	1	
011	S_{10}	S_0	S_0	0	0	
100	S ₁₁	S_0	S_0	0	1	
101	<i>S</i> ₁₂	S_0	S_0	0	0	
110	S ₁₃	S_0	S_0	0	0	
111	S_{14}	S_0	S_0	0	0	

(ロ) (部) (目) (目) (目) (目)

Sequence detector

Which states are equivalent ?

Input	S	S	+		Ζ	(S_0)
seq		0	1	0	1	
reset 0 1 00 01 10 11 000 001 010 011 100 101 110	$\begin{array}{c} S_{0} \\ S_{1} \\ S_{2} \\ S_{3} \\ S_{4} \\ S_{5} \\ S_{6} \\ S_{7} \\ S_{8} \\ S_{9} \\ S_{10} \\ S_{11} \\ S_{12} \\ S_{13} \\ S_{14} \end{array}$	$\begin{array}{c} S_{1} \\ S_{3} \\ S_{5} \\ S_{7} \\ S_{9} \\ S_{11} \\ S_{13} \\ S_{0} \\ S_{0}$	S_2 S_4 S_6 S_{10} S_{12} S_{14} S_0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{110}{111}$	$S_{13} S_{14}$	S_0 S_0	S_0 S_0	0	0	

æ

イロト イヨト イヨト イヨト

Example - Continued

Reduced state table

Can it still be simplified ?

Input	S	5	+	Ζ		
seq		0	1	0	1	
	_	-	-			
reset	S_0	S_1	S_2	0	0	
0	S_1	S_3	S_4	0	0	
1	S_2	S_5	S_6	0	0	
00	S_3	S_7	S_7	0	0	
01	S_4	S_9	S_7	0	0	
10	S_5	S_9	S_7	0	0	
11	S_6	S_7	S_7	0	0	
000	S_7	S_0	S_0	0	0	
010	S_9	S_0	S_0	0	1	

 $S_3 \equiv S_6$ $S_4 \equiv S_5$

State graph

Input	S	5	+	Ζ		
seq		0	1	0	1	
reset	S_0	S_1	S_2	0	0	
0	S_1	S_3	S_4	0	0	
1	S_2	S_4	S_3	0	0	
00	S_3	S ₇	S_7	0	0	
01	S_4	S_9	S_7	0	0	
000	S_7	S_0	S_0	0	0	
010	So	So	So	0	1	

(ロ) (部) (目) (目) (目) (目)

Two states are equivalent if there is no way of telling them apart by observing their inputs and outputs.

 \rightarrow Row matching technique is not sufficient to find all equivalent states

 \rightarrow Consider the case when you can observe only the circuit inputs and outputs, not the state diagram.

ightarrow States are equivalent if for identical inputs they produce identical outputs

イロト イポト イヨト イヨト 二日

Lecture 31

Let $\underline{x} = x_0 x_1 \dots x_n$ be an input sequence of arbitrary length n. States p and q are equivalent if and only if

$$z_p = (p, x) = z_q = (q, x) \quad \forall \ \underline{x}$$

 $ightarrow z_{
ho}$ is an output sequence when starting in state p and applying \underline{x} $ightarrow z_q$ is an output sequence when starting in state q and applying \underline{x}

The following input sequences have to be tested:

● 0 and 1

2 00, 01, 10, and 11

3 000, 001, 010, 011, ..., 111

4 0000, 0001, ...

6 etc., until the maximum length of the input

Two states, p and q, are equivalent if for every input x, their **outputs are the same** and their **next states are equivalent**.

 $z_p = (p, x) = z_q = (q, x)$ and next state of p for x is equal to next state of q for x

x is an input, and z_p and z_q are output generate by the circuit when applying x for states p and q respectively

If $p_1 \equiv q_1$ and $p_2 \equiv q_2$ then $p \equiv q$

Lecture 31

Two states, p and q, are equivalent if for every input x, their outputs are the same and their next states are equivalent.

Input	S	<i>S</i>	+	Ż	Ζ
seq		0	1	0	1
reset	S_0	S_1	S_2	0	0
0	S_1	<i>S</i> ₃	S_4	0	0
1	S_2	S_5	S_6	0	0
00	S_3	<i>S</i> ₇	S_8	0	0
01	S_4	S_9	S_{10}	0	0
10	S_5	<i>S</i> ₁₁	S_{12}	0	0
11	S_6	S ₁₃	S_{14}	0	0
000	S_7	S_0	S_0	0	0
001	S_8	S_0	S_0	0	0
010	S_9	S_0	S_0	0	1
011	S_{10}	S_0	S_0	0	0
100	S_{11}	S_0	S_0	0	1
101	S_{12}	S_0	S_0	0	0
110	S_{13}	S_0	S_0	0	0
111	S_{14}	S_0	S_0	0	0

 S_3 and S_4 are equivalent if $S_7 \equiv S_9$ and $S_8 \equiv S_{10}$. Since S_7 and S_9 have different outputs $\therefore S_3 \neq S_4$.

 S_0 and S_1 are equivalent if $S_1\equiv S_3$ and $S_2\equiv S_4$ and

御 と く き と く き と … き

$$S_2 \equiv S_4$$
 if $S_5 \equiv S_9$ and $S_6 \equiv S_{10}$.
Since $S_5 \not\equiv S_9 \therefore S_0 \not\equiv S_1$.

Equivalent states can be determined using an implication table Aim: Find equivalent states by checking each pair of states

- \rightarrow Non-equivalent pairs of states are found and eliminated,
- \rightarrow Only equivalent pairs of states remain

Present	Next	Present	
state	<i>x</i> = 0	x = 1	output
а	d	С	0
Ь	f	h	0
с	е	d	1
d	а	е	0
е	с	а	1
f	f	Ь	1
g	Ь	h	0
h	с	g	1

(日)

				a		_						
				b								
Present state	Next $x = 0$	state $x = 1$	Present output	c	×	×						
a	d	С	0	d			×					
b c	f e	h d	0	e	×	×		×				
u e f	a C f	e a b	1	f	×	×		×				
g h	b c	h g	0	g			×		×	×		
	I		'	h	×	×		×			×]
					a	b	c	d	e	f	g	h

Lecture 31

<□> <0><</p>

				a								
				b	d - f c - h							
Present state	Next $x = 0$	state $x = 1$	Present output	c	\times	×						
a b	d f	C h	0	d	d-a c-e	a-f e-h	×		1			
c d	e a	d e	1 0	e	×	×	c - e d - a	×				
e f	с f	a b	1 1	f	×	×	e-f b-d	X	$\begin{vmatrix} c-f\\ a-b \end{vmatrix}$			
g h	b c	h g	0 1	g	d-b c-h	f-b	×	a-b e-h	×	×		
				h	\times	\times	$\begin{array}{c} c-e\\ b-g \end{array}$	Х	a-g	c-f b-g	Х	
					a	b	С	d	e	f	g	h

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

				a								
				b	${}^{d}\bar{\mathbf{x}}_{h}^{f}$							
Present state	Next $x = 0$	state $x = 1$	Present output	c	×	×						
a	d	C b	0	d	с <i>-</i> е	$\stackrel{a}{_{e-h}}\bar{X}_{h}^{f}$	×					
c d	e	d	1	e	\times	\times	d-a	\times				
e f	C f	a b	1	f	×	×	${}^{e}_{b} = {}^{f}_{d}$	×	${}^{c}_{a} \bar{\mathbf{X}}^{f}_{b}$			
g h	b c	h g	0	g	${}^{d}_{c} \overset{-}{\overset{-}{\overset{-}}}{}^{b}_{h}$	$f \mathbf{X} b$	X	${}^{a}_{e}\bar{\mathbf{X}}^{b}_{h}$	×	×		
		-	1	h	×	×	${}^{c}_{b}\bar{\mathbf{x}}^{e}_{g}$	×	$a \mathbf{X} g$	${}^c_b \overset{-}{\overset{-}{X}}{}^f_g$	Х	
	a — d ar				a	b	c	d	e	f	g	h

Lecture 31

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

ECE 210

Use equivalent states to modify the original state table

 $a\equiv d$ and $c\equiv e$

Present	Next	state	Present		Present	t Next state		Present
state	<i>x</i> = 0	x = 1	output		state	<i>x</i> = 0	x = 1	output
				_				
а	d	с	0		ad	ad	се	0
Ь	f	h	0		Ь	f	h	0
С	е	d	1		ce	ce	ad	1
d	а	е	0		f	f	Ь	1
е	с	а	1		g	Ь	h	0
f	f	Ь	1		h	ce	g	1
g	Ь	h	0					
h	с	g	1					

(日)

Reduce the state graph to a minimum number of states

Example 2 - Continued

Reduce the state graph to a minimum number of states

æ

イロト イポト イヨト イヨト

Example 2 - Continued

Complete the simplified state graph

イロト イポト イヨト イヨト

æ

Reduce the state graph to a minimum number of states

æ

Example 3 - Continued

Reduce the state graph to a minimum number of states

æ

Example 3 - Continued

Complete the simplified state graph

A (B) > A (B) > A (B) >

Next class...

- Serial code converter
- Please read Lecture 32

ECE 210 Introduction to Digital Logic Design

Lecture 32 Serial Code Converter

Lecture 32

・ロト ・部ト ・ヨト ・ヨト 三日

Design Example

_

We will design a sequential *BCD* to Excess-3 code converter.

4-bits numbers will be converted sequentially

Conversion will be performed bit-by-bit starting with the LSB

decimal	BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Bit-by-bit conversion example

- \rightarrow Consider the input 0000
- ightarrow A is the reset state

decimal	BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

State graph

S	S^+	Ζ	
	x = 0, 1	x = 0, 1	
Α	BC	10	
В	DF	10	
С	EG	01	
D	HL	01	
Ε	IM	10	
F	JN	10	
G	KP	10	
Н	AA	01	
1	AA	01	
J	$A \times$	$0 \times$	0
Κ	$A \times$	$0 \times$	
L	$A \times$	$0 \times$	
М	$A \times$	1 imes	0/0/
Ν	$A \times$	$1 \times$	
Р	A imes	1 imes	

<ロト < 部ト < 注入 < 注入

Minimized state graph

5	\mathcal{S}^+	Ζ
	x = 0, 1	x = 0, 1
Α	BC	10
В	DE	10
С	EE	01
D	HH	01
Ε	HM	10
Н	AA	01
М	$A \times$	$1 \times$

< ロ > < 四 > < 回 > < 回 > < 回 >

Transition table for Flip-flops

5	S^+	Ζ			$Q_1 Q_2 Q_3$	$Q_1^+ Q_2^+ Q_3^+$	Ζ
	x = 0, 1	<i>x</i> = 0, 1				x = 0, 1	x = 0, 1
Α	BC	10		4	000	100 101	10
В	DE	10		В	100	111 110	10
С	EE	01	(С	101	110 110	01
D	HH	01	l	D	111	011 011	01
Ε	HM	10		E	110	011 010	10
Н	AA	01	I	Н	011	000 000	01
М	$A \times$	1 imes	1	И	010	000 ×	1 imes
				_	001	× ×	××

 \leftarrow States are given adjacent assignments in order to simplify the next state function.

• • = • • = •

Transition maps

Lecture 32

Code converter circuit

Lecture 32

æ

Serial Adder

We will design a circuit that adds two numbers A and B, bit-by-bit.

$$\rightarrow A = a_n a_{n-1} a_{n-2} \dots a_0$$

 $\rightarrow B = b_n b_{n-1} b_{n-2} \dots b_0$

The circuit outputs the sum $S_i = a_i + b_i$.

Lecture 32

State diagram

State diagram of a Moore sequential adder.

Inputs: a_i and b_i .

Output: Sum.

State table and map

Current	Next	state	C^+S^+	-	Output
state CS	<i>ab</i> = 00	01	11	10	Z
00	00	01	10	01	0
01	00	01	10	01	1
11	01	10	11	10	1
10	01	10	11	10	0

K-maps for D-flip-flops

ECE 210

11/15

Lecture 32

Serial adder circuit

Lecture 32

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Parallel adder implementation - From Lecture 19

Lecture 32

Serial vs parallel adder

ECE 210

Lecture 32

Next class...

- Design example
- Please read Lecture 33

(日) (個) (E) (E) (E)

ECE 210 Introduction to Digital Logic Design

> Lecture 33 Design Examples

Lecture 33

Example 1 - Vending machine

Release item after \$3 are deposited

Single coin slot for loonie (1\$) and toonie (2\$)

No change

臣

Moore machine state graph

- \rightarrow 3 loonies (3 \times \$1)
- \rightarrow Loonie + toonie (\$1 + \$2)
- \rightarrow Toonie + loonie (2 + 1)
- \rightarrow Two loonies (\$2 + \$2)

Inputs: L and T

イロト イポト イヨト イヨト

훈

Minimize the number of states

present	inputs	next	
state	LT	state	output
0\$	00	0\$	0
	01	1\$	0
	10	2\$	0
	11	×	0
1\$	00	1\$	0
	01	2\$	0
	10	3\$	0
	11	×	0
2\$	00	2\$	0
	01	3\$	0
	10	2\$	0
	11	×	0
3\$	×	×	1

Transition maps using D-FF

$Q_1 \ Q_0$	inputs <i>LT</i>	$\stackrel{next}{Q_1^+} Q_0^+$	z
00	00	00	0
	01	01	0
	10	10	0
	11	×	0
01	00	01	0
	01	10	0
	10	11	0
	11	×	0
10	00	10	0
	01	11	0
	10	10	0
	11	×	0
11	×	×	1

Circuit implementation

$$D_1 = Q_1 + D + Q_0 + L$$
$$D_0 = \overline{Q_0}L + Q_0\overline{L} + Q_1L + Q_1T$$
$$Z = Q_0Q_1$$

(日) (部) (王) (王) (王)

Example 2 - Road construction electric sign

Design a Mealy machine to drive the electric sign used for detours during road constructions.

The sign should display the sequence shown below when the input D is zero.

The arrow should blink (alternate between state 0 and 3) when D = 1.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の Q ()

Example 2 - Road construction electric sign

Design a Moore machine to drive the electric sign used for detours during road constructions.

The sign should display the sequence shown below when the input X is zero.

When the input X is 1 and the system is not in state 1, the sequence should be carried on until state 3 is reached. The arrow should then blink (alternate between states 0 and 3).

Output assignment

Group the LED's that are only activate simultaneously

Output *abcdex*₀*x*₁*x*₂:

$00000000 \to 10100100 \to 11101010 \to 11111001$

$$0 \rightarrow A4 \rightarrow EA \rightarrow F9$$

훈

A B + A B +

Present	next	output	Present	next	output
state	state		state	state	
	X = 0, 1		$Q_0 Q_1$	X = 0, 1	
S_0	$S_1 S_3$	0	00	01 10	0
S_1	$S_2 S_2$	A4	01	11 11	A4
S_2	$S_3 S_3$	EA	11	10 10	EA
S_3	$S_0 S_0$	F9	10	00 00	F9

Lecture 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ �� ◆

Present	next	output
state	state	Ζ
$Q_0 Q_1$	X = 0, 1	
00	01 10	0
01	11 11	A4
11	10 10	EA
10	00 00	F9

 $D_0 =$

 $D_1 =$

◆□ → ◆□ → ◆ Ξ → ▲ Ξ → ● ○ ○ 11/14

d —
b =
<i>c</i> =
d =
<i>e</i> =
$x_0 =$
$x_1 =$
$x_2 =$

State	output	
	$abcdex_0x_1x_2$	
00	0000000	
01	10100100	
10	11101010	
11	11111001	

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ �� ◆

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><13/14

Lecture 33

The end

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の ペ 14/14